Skip to main content

Advertisement

Log in

Is antisense an appropriate nomenclature or design for oligodeoxynucleotides aimed at the inhibition of HIV-1 replication?

  • Published:
AAPS PharmSci Aims and scope Submit manuscript

Abstract

We have evaluated the specificity and the variation in activity against human immunodeficiency virus (HIV) infection of antisense oligodeoxynucleotides (ODNs) with regard to factors such as dose-response range, number and choice of experimental controls, backbone modifications of the ODNs, type of cell infection, length of assays, and delivery approach. The highest level of inhibition was achieved in our long-term assay with MOLT-3 cells acutely infected with HIV-1 (IIIB0 and treated with free phosphorothioate-modified ODNs (PS-ODNs). The highest level of specificity was observed in our short-term assay with MOLT-3 cells acutely infected with HIV-1 (IIIB) and treated with free PS-ODNs. the highest potency (IC50 level) was observed in our short-term chronic-infection model with (DLS)-delivered ODNs in which the DLS delivery improved the ODN activity up to 106 times compared to the activity of free ODNs. Thus, the near blocking of HIV replication obtained when using PS-ODNs appears because of the addition of extracellular and/or membranar effects. The higher efficacy of PS-ODNs compared to unmodified ODNs, when both are delivered with the DLS system, was demonstrated solely in our short-term assay with MOLT-3 cells. Important variations in the level of sequence specificity were observed and depended on the type of control used and the type of cell assay employed. It seems that all 3 groups of control-tested, random, sense sequence, and non-antisense T30177 ODNs might have distinct activity and, consequently, different modes of action in inhibiting HIV replication. Our data buttress the notion that the contribution of the sequence-specific mediated mode of action is minor compared to the other mechanisms involved in ODN antiviral activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stein CA, Tonkinson JL, Yakubov L. Phosphorothioate oligodeoxynucleotides-antisense inhibitors of gene expression? Pharmacol Ther. 1991;52:365–384.

    Article  CAS  PubMed  Google Scholar 

  2. Zamecnik PC, Stephenson M. Inhibition of Rous sarcoma virus replication and transformation by a specific oligodeoxynucleotide. Proc Natl Acad Sci U S A. 1978;75:280–284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zamecnik PC, Goodchild J, Taguchi Y, Sarin PS. Inhibition of replication and expression of human t-cell lymphotropic type III in cultured cells by exogenous synthetic oligonucleotides complementary to viral RNA. Proc Natl Acad Sci U S A. 1986;83:4143–4146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Stein CA, Cheng Y-C. Antisense oligonucleotides as therapeutics agents: is the bullet really magical? Science. 1993;261:1004–1012.

    Article  CAS  PubMed  Google Scholar 

  5. Agrawal S, Temsamani J, Tang J-Y. Pharmacokinetics biodistribution, and stability of oligodeoxynucleotide phosphorothioates in mice. Proc Natl Acad Sci USA. 1991;88:7595–7599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bennett CF, Dean N, Ecker DJ, Monia BP. Pharmacology of antisense therapeutic agents: cancer and inflammation. In: Agrawal S, ed. Antisense Therapeutics. [city?], NJ: Humana Press; 1996:13–46.

    Chapter  Google Scholar 

  7. Iversen PL, Mata J, Tracewell WG, Zon G. Pharmacokinetics of an antisense phosphorothioate oligodeoxynucleotide against rev from human immunodeficiency virus type 1 in adult male rat following single injections and continuous infusion. Antisense Res Dev. 1994;4:43–52.

    Article  CAS  PubMed  Google Scholar 

  8. Agrawal S, Temsamini J, Galbraith W, Tang J-Y. Pharmacokinetics of antisense oligonucleotides. Clin Pharmacokinet. 1995;28:7–16.

    Article  CAS  PubMed  Google Scholar 

  9. Roush W. Antisense aims for a renaissance. Science. 1997;276:1192–1193.

    Article  CAS  PubMed  Google Scholar 

  10. Wagner RW. The state of the art in antisense research. Nature Medecine. 1995;1:1116–1118.

    Article  CAS  Google Scholar 

  11. Stein CA, Kreig AM. Problems in interpretation of data derived from in vitro and in vivo use of antisense oligodeoxynucleotides. Antisense Res Dev. 1994;4:67–69.

    Article  CAS  PubMed  Google Scholar 

  12. Wagner RW. Gene inhibition using antisense oligodeoxynucleotides. Nature. 1994;372:333–335.

    Article  CAS  PubMed  Google Scholar 

  13. Thierry AR, Tackle GB. Liposomes as a delivery system for antisense and rybozyme compounds. In: Akhtar S, ed Delivery Strategies for Antisense Oligonucleotide Therapeutics. Boca Raton, FL: CRC Press; 1995:199–221.

    Google Scholar 

  14. Thierry AR, Dritschilo A. Intracellular avallability of unmodified, phosphorothloated and liposomally encapsulated oligodeoxynucleotides for antisense activity. Nucleic Acids Res. 1992;21:5691–5698.

    Article  Google Scholar 

  15. Lavigne C, Thierry AR. Enhanced antisense inhibition of human immunodeficiency virus type 1 in cell cultures by DLS delivery system. Biochem Biophys Res Commun. 1997;237:566–571.

    Article  CAS  PubMed  Google Scholar 

  16. Kim H-J, Lee K, O Rear JJ. A short sequence upstream of the 5 Major splice site is important for encapsidation of HIV-1 genomic RNA. Virology. 1994;198:336–340.

    Article  CAS  PubMed  Google Scholar 

  17. Muriaux D, Girard P-M, Bonnet-Mathonière B, Paoletti J. Dimerization of HIV-1Lai RNA at low ionic strength. J Biol Chem. 1995;270:8209–8216.

    Article  CAS  PubMed  Google Scholar 

  18. Agrawal S, Tang JY. GEM 91-an antisense oligonucleotide phosphorothioate as a therapeutic agent for AIDS. Antisense Res Dev. 1992;2:261–266.

    Article  CAS  PubMed  Google Scholar 

  19. Matsukura M, Zon G, Shinozuka K, et al. Regulation of viral expression of human immunodeficiency virus in vitro by an antisense phosphorothioate oligodeoxynucleotide against rev (art/trs) in chronically infected cells. Proc Natl Acad Sci U S A. 1989;86:4244–4248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ojwang JO, buckheit RW, Pommier Y, et al. T30177, an oligonucleotide stabilized by an intramolecular guanosine octet, is a potent inhibitor of laboratory strains and clinical isolates of human immunodeficiency virus type 1. Antimicrob Agents Chemother. 1995;39:2426–2435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Popovic M, Read-Conole E, Gallo RC. T4 positive human neoplastic cell lines susceptible to and permissive for HTLV-III. Lancet. 1984;II:1472–1473.

    Article  Google Scholar 

  22. Popovic M, Sarngadharan MG, Read E, Gallo RC. Detection, isolation, and continuous production of cytopathic retroviruses (HTLV-III) from patients with AIDS and pre-AIDS. Science. 1984;224:497–500.

    Article  CAS  PubMed  Google Scholar 

  23. Thierry AR, Lunardi-Iskandar Y, Bryant JL, Rabinovich P, Gallo RC, Mahan LC. Systemic gene therapy: biodistribution and long-term expression of a transgene in mice. Proc Natl Acad Sci USA. 1995;92:9742–9746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Thierry AR, Rabinovich P, Peng B, Mahan LC, Bryant JL, Gallo RC. Characterization of liposome-mediated gene delivery: expression, stability and pharmacokinetics of plasmid DNA. Gene Ther. 1997;4:226–237.

    Article  CAS  PubMed  Google Scholar 

  25. Pauwels R, Balzarini J, Baba M, et al. Rapid and automated tetrazolium based colorimetric assay for the detection of anti-HIV compounds. J Virol Methods. 1988;20:309–321.

    Article  CAS  PubMed  Google Scholar 

  26. Gura T. Antisense has growing pains. Science. 1995;270:575–577.

    Article  CAS  PubMed  Google Scholar 

  27. Stein CA. Does antisense exist? Nature Medecine. 1995;1:1119–1121.

    Article  CAS  Google Scholar 

  28. Stein CA. Phosphorothioate antisense oligodeoxynucleotides: questions of specificity. Trends Biotechnol. 1996;14:147–149.

    Article  CAS  PubMed  Google Scholar 

  29. Lisziewicz J, Sun D, Metelev V, Zamecnik P, Gallo RC, Agrawal S. Long-term treatment of human immunodeficiency virus-infected cells with antisense oligonucleotide phosphorothioates. Proc Natl Acad Sci U S A. 1993;90:3860–3864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Agrawal S, Goodchild J, Civeira M, Sarin PS, Zamecnik PC. Nucleosides Nucleotides. 1989;8:819–823.

    Article  Google Scholar 

  31. Kinchington D, Galpin S, Jaroszewski JW, Ghosh K, Subasinghe C, Cohen JS. A comparison of gag, pol and rev antisense oligodeoxynucleotides as inhibitors of HIV-1. Antivir Res. 1992;17:53–62.

    Article  CAS  PubMed  Google Scholar 

  32. Zelphati O, Imbach J-L, Signoret N, Zon G, Rayner B, Leserman L. Antisense oligonucleotides in solution or encapsulated in immunoliposomes inhibit replication of HIV-1 by several different mechanisms. Nucleic Acids Res. 1994;22:4307–4314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lavigne C, Thierry AR. Lipid-based delivery of combinations of antisense oligodeoxynucleotides for the in vitro inhibition of HIV-1 replication. AAPS Pharmsci. 2001;3:article 7. Available at: http://www.aapspharmaceutica.com/scientificjournals/pharmsci/journal/ 01_07.html.Accessed February 12, 2001.

  34. Jendis J, Strack B, Volkmann S, Boni J, Molling K. Inhibition of replication of fresh HIV type 1 patient isolates by a polypurine tract-specific self-complementary oligodeoxynucleotide. AIDS Res Hum Retroviruses. 1996;12:1161–1168.

    Article  CAS  PubMed  Google Scholar 

  35. Tamamoto T, Yamamoto S, Kataoka T, Tokunaga T. Ability of oligonucleotides with certain palindromes to induce interferon production and augment natural killer cell activity is associated with their base length. Antisense Res Dev. 1994;4:119–122.

    Article  Google Scholar 

  36. Krieg A, Yi, A-K, Matson, S, et al. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature. 1995;374:546–549.

    Article  CAS  PubMed  Google Scholar 

  37. Agrawal S, Ikeuchi T, Sun D, et al. Inhibition of human immunodeficiency virus in early infected and chronically infected cells by antisense oligodeoxynucleotide and its phosphorothioate analogue. Proc Natl Acad Sci U S A. 1989;86:7790–7794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Anazodo MI, Wainberg MA, Friesen AD, Wright JA. Sequence-specific inhibition of gene expression by a novel antisense oligodeoxynucleotide phosphorothioate directed against a nonregulatory region of the human immunodeficiency virus type 1 genome. J Virol. 1995;69:1794–1801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Stein CA, Cleary AM, Yakubov L, Lederman S. Phosphorothioate oligodeoxynucleotides bind to the third variable loop domain (v3) of human immunodeficiency virus type 1 gp120. Antisense Res Dev. 1993;3:9–31.

    Article  Google Scholar 

  40. Yakubov L, Khaled Z, Zhang L-M, Truneh A, Vlassov V, Stein CA. Mode of interaction of oligodeoxynucleotides with recombinant sCD4. J Biol Chem. 1993;268:18818–18823.

    Article  CAS  PubMed  Google Scholar 

  41. Yamaguchi K, Papp B, Zhang D, Ali AN, Agrawal S, Byrn RA. The multiple inhibitory mechanisms of GEM 91, a gag antisense phosphorothioate oligonucleotide, for human immunodeficiency virus type 1. AIDS Res Hum Retroviruses. 1997;13:545–554.

    Article  CAS  PubMed  Google Scholar 

  42. Majumdar C, Stein CA, Cohen JS, Broder S, Wilson SH. Stepwise mechanism of HIV reverse transcriptase: Primer function of phosphorothioate oligodeoxynucleotide. Biochemistry. 1989;28:1340–1346.

    Article  CAS  PubMed  Google Scholar 

  43. Lisziewicz J, Sun D, Weichold FF, et al. Antisense oligodeoxynucleotide phosphorothioate complementary to Gag mRNA blocks replication of human immunodeficiency virus type 1 in human peripheral blood cells. Proc Natl Acad Sci U S A. 1994;91:7942–7946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bordier B, Perala-Heale M, Degols G, et al. Sequence-specific inhibition of human immunodeficiency virus (HIV) reverse transcription by antisense oligonucleotides: Comparative study in cell-free assays and in HIV-infected cells. Proc Natl Acad Sci U S A. 1995;92:9383–9387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. White RR, Sullenger BA, Rusconi CP. Developing aptamers into therapeutics. J Clin Invest. 2000;106:929–934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain R. Thierry.

Additional information

Published: April 30, 2002

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lavigne, C., Yelle, J., Sauve, G. et al. Is antisense an appropriate nomenclature or design for oligodeoxynucleotides aimed at the inhibition of HIV-1 replication?. AAPS PharmSci 4, 9 (2002). https://doi.org/10.1208/ps040207

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1208/ps040207

Key words

Navigation