Skip to main content
Log in

The venus flytrap of periplasmic binding proteins: An ancient protein module present in multiple drug receptors

  • Published:
AAPS PharmSci Aims and scope Submit manuscript

Abstract

Located between the inner and outer membranes of Gram-negative bacteria, periplasmic binding proteins (PBPs) scavenge or sense diverse nutrients in the environment by coupling to transporters or chemotaxis receptors in the inner membrane. Their three-dimensional structures have been deduced in atomic detail with the use of X-ray crystallography, both in the free and liganded state. PBPs consist of two large lobes that close around the bound ligand, resembling a Venus flytrap. This architecture is reiterated in transcriptional regulators, such as the lac repressors. In the process of evolution, genes encoding the PBPs have fused with genes for integral membrane proteins. Thus, diverse mammalian receptors contain extracellular ligand binding domains that are homologous to the PBPs; these include glutamate/glycine-gated ion channels such as the NMDA receptor, G protein-coupled receptors, including metabotropic glutamate, GABA-B, calcium sensing, and pheromone receptors, and atrial natriuretic peptide-guanylate cyclase receptors. Many of these receptors are promising drug targets. On the basis of homology to PBPs and a recently resolved crystal structure of the extracellular binding domain of a glutamate receptor ion channel, it is possible to construct three-dimensional models of their ligand binding domains. Together with the extensive information available on the mechanism of ligand binding to PBPs, such models can serve as a guide in drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bork P, Downing AK, Kieffer B, Campbell ID. Structure and distribution of modules in extracellular proteins. Q. Rev. Biophys. 1996;29:119–167.

    Article  CAS  PubMed  Google Scholar 

  2. Quiocho FA, Ledvina PS. Atomic structure and specificity of bacterial periplasmic receptors for active transport and chemotaxis: variation of common themes. Mol. Microbiol. 1996;20:17–25.

    Article  CAS  PubMed  Google Scholar 

  3. O’Hara PJ, Sheppard PO, Thogersen H. et al. The ligand-binding domain in metabotropic glutamate receptors is related to bacterial periplasmic binding proteins. Neuron 1993;11:41–52. [PUBMED]

    Article  PubMed  Google Scholar 

  4. Laube B, Hirai H, Sturgess M, Betz H, Kuhse J. Molecular determinants of agonist discrimination by NMDA receptor subunits: analysis of the glutamate binding site on the NR2B subunit. Neuron 1997;18:493–503.

    Article  CAS  PubMed  Google Scholar 

  5. Nichols JC, Vyas NK, Quiocho FA, Matthews KS. Model of lactose repressor core based on alignment with sugar-binding proteins is concordant with genetic and chemical data. J. Biol. Chem. 1993;268:17602–17612.

    CAS  PubMed  Google Scholar 

  6. Oh BH, Pandit J, Kang CH, Nikaido K, Gokcen S, Ames GF, Kim SH. Three-dimensional structures of the periplasmic lysine/arginine/omithine-binding protein with and without a ligand. J. Biol. Chem. 1993;268:11348–11355.

    CAS  PubMed  Google Scholar 

  7. Conklin BR, Bourne HR. Homeostatic signals. Marriage of the flytrap and the serpent. Nature 1994;367:22.

    Article  CAS  PubMed  Google Scholar 

  8. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J. Mol. Biol. 1990;215:403–410.

    Article  CAS  PubMed  Google Scholar 

  9. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–3402.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Graul RC, Sadée W. Evolutionary relationships among proteins probed by an iterative neighborhood cluster analysis (INCA). Alignment of bacteriorhodopsins with the yeast sequence YR02. Pharm. Res. 1997;14:1533–1541.

    Article  CAS  PubMed  Google Scholar 

  11. Richarme G, Caldas TD. Chaperone proterties of the bacterial periplasmic substrate-binding proteins. J. Biol. Chem. 1997;272:15607–15612.

    Article  CAS  PubMed  Google Scholar 

  12. Schuler GD, Epstein JA, Onkawa H, Kans JA. Entrez: molecular biology database and retrieval system. Methods Enzymol. 1996;266:141–162.

    Article  CAS  PubMed  Google Scholar 

  13. Higgins CF. ABC transporters: from microorganisms to man. Annu. Rev. Cell Biol. 1992;8:67–113.

    Article  CAS  PubMed  Google Scholar 

  14. Shilton BH, Flocco MM, Nilsson M, Mowbray SL. Conformational changes of three periplasmic receptors for bacterial chemotaxis and transport: the maltose-, glucose/galactose- and ribose-binding proteins. J. Mol. Biol. 1996;264:350–363.

    Article  CAS  PubMed  Google Scholar 

  15. Wolf A, Lee KC, Kirsch JF, Ames GFL. Ligand-dependent conformational plasticity of the periplasmic histidine-binding protein HisJ. Involvement in transport specificity. J. Biol. Chem. 1996;271:21243–21250.

    Article  CAS  PubMed  Google Scholar 

  16. Oh BH, Ames GF, Kim SH. Structural basis for multiple ligand specificity of the periplasmic lysine-, arginine-, ornithine-binding protein. J. Biol. Chem. 1994;269:26323–26330.

    CAS  PubMed  Google Scholar 

  17. Oh BH, Kang CH, De Bondt H, Kim SH, Nikaido K, Joshi AK, Ames GF. The bacterial periplasmic histidine-binding protein structure/function analysis of the ligand-binding site and comparison with related proteins. J. Biol. Chem. 1994;269:4135–4143.

    CAS  PubMed  Google Scholar 

  18. Tame JR, Murshudov GN, Dodson EJ, et al. The structural basis of sequence-independent peptide binding by OppA protein. Science 1994;264:1578–1581.

    Article  CAS  PubMed  Google Scholar 

  19. Olah GA, Trakhanov S, Trewhella J, Quiocho FA. Leucine/isoleucine/valine-binding protein contracts upon binding of ligand. J. Biol. Chem. 1993;268:16241–16247.

    CAS  PubMed  Google Scholar 

  20. Sack JS, Saper MA, Quiocho FA. Periplasmic binding protein structure and function. Refined X-ray structures of the leucine/isoleucine/valine-binding protein and its complex with leucine. J. Mol. Biol. 1989;206:171–191.

    Article  CAS  PubMed  Google Scholar 

  21. Kempner ES. Movable lobes and flexible loops in proteins. Structural deformations that control biochemical activity. FEBS Lett. 1993;326:4–10.

    Article  CAS  PubMed  Google Scholar 

  22. Higgin CF, Ames GF. Two periplasmic transport proteins which interact with a common membrane receptor show extensive homology: complete nucleotide sequences. Proc. Natl. Acad. Sci. U S A 1981;78:6038–6042.

    Article  Google Scholar 

  23. Gilson E, Alloing G, Schmidt T, Claverys JP, Dudler R, Hofnung M. Evidence for high affinity binding-protein dependent transport systems in gram-positive bacteria and in Mycoplasma. Embo J. 1988;7:3971–3974.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Yoshida K, Fujimura M, Yanai N, Fujita Y. Cloning and sequencing of a 23-kb region of the Bacillus subtilis genome between the iol and hut operons. DNA Res. 1995;2:295–301.

    Article  CAS  PubMed  Google Scholar 

  25. Kronemeyer W, Peekhaus N, Kramer R, Sahm H, Eggeling L. Structure of the gluABCD cluster encoding the glutamate uptake system of Corynebacterium glutamicum. J. Bacteriol. 1995;177:1152–1158.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Turner MS, Timms P, Hafner LM, Giffard PM. Identification and characterization of a basic cell surface-located protein from lactobacillus fermentum BR11. J. Bacteriol. 1997;179:3310–3316.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Roos S, Aleljung P, Robert N, Lee B, Wadstrom T, Lindberg M, Jonsson H. A collagen binding protein from Lactobacillus reuteri is part of an ABC transporter system? FEMS Microbiol. Lett. 1996;144:33–38.

    Article  CAS  PubMed  Google Scholar 

  28. Pei Z, Blaser MJ. PEB1, the major cell-binding factor of Campylobacter jejuni, is a homolog of the binding component in gramnegative nutrient transport systems. J. Biol. Chem. 1993;268:18717–18725.

    CAS  PubMed  Google Scholar 

  29. Bowie JU, Luthy R, Eisenberg D. A method to identify protein sequences that fold into a known three-dimensional structure. Science 1991;253:164–170.

    Article  CAS  PubMed  Google Scholar 

  30. Friedman AM, Fischmann TO, Steitz TA. Crystal structure of lac repressor core tetramer and its implications for DNA looping. Science 1995;268:1721–1727.

    Article  CAS  PubMed  Google Scholar 

  31. Schumacher MA, Choi KY, Zalkin H, Brennan RG. Crystal structure of lacl member, PurR, bound to DNA: minor groove binding by alpha helices. Science 1994;266:763–770.

    Article  CAS  PubMed  Google Scholar 

  32. Nohno T, Saito T, Hong JS. Cloning and complete nucleotide sequence of the Escherichia coli glutamine permease operon (glnHPQ). Mol. Gen. Genet. 1986;205:260–269.

    Article  CAS  PubMed  Google Scholar 

  33. Kaneko T, Sato S, Kotani H, et al. Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res. 1996;3:109–136.

    Article  CAS  PubMed  Google Scholar 

  34. Graul RC, Sadée W. Sequence alignments of the H+-dependent oligopeptide transporter family PTR: inferences on structure and function of the intestinal PET1 transporter. Pharm. Res. 1997;14:388–400.

    Article  CAS  PubMed  Google Scholar 

  35. Nayak A, Zastrow DJ, Lickteig R, Zahniser NR, Browning MD. Maintenance of late-phase LTP is accompanied by PKA-dependent increase in AMPA receptor synthesis. Nature 1998;394:680–683.

    Article  CAS  PubMed  Google Scholar 

  36. Armstrong N, Sun Y, Chen GQ, Gouaux E. Structure of a glutamate-receptor ligand-binding core in complex with kainate. Nature 1998;395:913–917.

    Article  CAS  PubMed  Google Scholar 

  37. Masu M, Tanabe Y, Tsuchida K, Shigemoto R, Nakanishi S. Sequence and expression of a metabotropic glutamate receptor. Nature 1991;349:760–765.

    Article  CAS  PubMed  Google Scholar 

  38. Houamed KM, Kuijper JL, Gilbert TL, et al. Cloning, expression, and gene structure of a G protein-coupled glutamate receptor from rat brain. Science 1991;252:1318–1321.

    Article  CAS  PubMed  Google Scholar 

  39. Moghaddam B, Adams BW. Reversal of phencyclidine effects by a group II metabotropic glutamate receptor agonist in rats. Science 1998;281:1349–1352.

    Article  CAS  PubMed  Google Scholar 

  40. Cockcroft VB, Ortells MO, Thomas P, Lunt GG. Homologies and disparities of glutamate receptors: a critical analysis. Neurochem. Int. 1993;23:583–594.

    Article  CAS  PubMed  Google Scholar 

  41. Kaupmann K, Huggel K, Heid J, et al. Expression cloning of GABA(B) receptors uncovers similarity to metabotropic glutamate receptors. Nature 1997;386:239–246.

    Article  CAS  PubMed  Google Scholar 

  42. Aprison MH, Galvez-Ruano E, Lipkowitz KB. The nicotinic cholinergic receptor: a theoretical model. J. Neurosci. Res. 1996;46:226–230.

    Article  CAS  PubMed  Google Scholar 

  43. Smith GB, Olsen RW. Functional domains of GABAA receptors. Trends Pharmacol. Sci. 1995;16:162–168.

    Article  CAS  PubMed  Google Scholar 

  44. Brown EM, Vassilev PM, Hebert SC. Calcium ions as extracellular messengers. Cell 1995;83:679–682.

    Article  CAS  PubMed  Google Scholar 

  45. Brown EM, Gamba G, Riccardi D, et al. Cloning and characterization of an extracellular Ca2+-sensing receptor from bovine REFthyroid. Nature 1993;366:575–580.

    Article  CAS  PubMed  Google Scholar 

  46. Garrett JE, Capuano IV, Hammerland LG, et al. Molecular cloning and functional expression of human REFthyroid calcium receptor cDNAs. J. Biol. Chem. 1995;270:12919–12925.

    Article  CAS  PubMed  Google Scholar 

  47. Vyas NK, Vyas MN, Quiocho FA. A novel calcium binding site in the galactose-binding protein of bacterial transport and chemotaxis. Nature 1987;327:635–638.

    Article  CAS  PubMed  Google Scholar 

  48. Kubo Y, Miyashita T, Murata Y. Structural basis for a Ca2+-sensing function of the metabotropic glutamate receptors. Science. 1998;279:1722–1725.

    Article  CAS  PubMed  Google Scholar 

  49. Baron J, Winer KK, Yanovski JA, et al. Mutations in the Ca2+-sensing receptor gene cause autosomal dominant and sporadic hypoREFthyroidism. Hum. Mol. Genet. 1996;5:601–606.

    Article  CAS  PubMed  Google Scholar 

  50. Pollak MR, Brown EM, Chou YH, et al. Mutations in the human Ca2+-sensing receptor gene cause familial hypocalciuric hypercalcemia and neonatal severe hyperREFthyroidism. Cell 1993;75:1297–1303.

    Article  CAS  PubMed  Google Scholar 

  51. Pearce SH, Trump D, Wooding C, et al. Calcium-sensing receptor mutations in familial benign hypercalcemia and neonatal hyperREFthyroidism. J. Clin. Invest. 1995;96:2683–2692.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Herrada G, Dulac C. A novel family of putative pheromone receptors in mammals with a topographically organized and sexually dimorphic distribution. Cell 1997;90:763–773.

    Article  CAS  PubMed  Google Scholar 

  53. Dulac C, Axel R. A novel family of genes encoding putative pheromone receptors in mammals. Cell 1995;83:195–206.

    Article  CAS  PubMed  Google Scholar 

  54. Nakao K, Itoh H, Saito Y, Mukoyama M, Ogawa Y. The natriuretic peptide family. Cur. Opin. Nephrol. Hypertension 1996;5:4–11.

    Article  CAS  Google Scholar 

  55. Romano C, Yang WL, O’Malley KL. Metabotropic glutamate receptor 5 is a disulfide-linked dimer. J. Biol. Chem. 1996;271:28612–28616.

    Article  CAS  PubMed  Google Scholar 

  56. Ward DT, Brown EM, Harris HW. Disulfide bonds in the extracellular calcium-polyvalent cation-sensing receptor correlate with dimer formation and its response to divalent cations in vitro. J. Biol. Chem. 1998;273:14476–14483.

    Article  CAS  PubMed  Google Scholar 

  57. Jones KA, Borowsky B, Tamm JA, et al. GABABreceptors function as a heteromeric assembly of the subunits GABABR1 and GABABR2. Nature 1998;396:674–679.

    Article  CAS  PubMed  Google Scholar 

  58. White JH, Wise A, Main MJ, et al. Heterodimerization is required for the formation of a functional GABAB receptor. Nature 1998;396:679–682.

    Article  CAS  PubMed  Google Scholar 

  59. Kaupmann K, Malitschek B, Schuler V, et al. GABAB-receptor subtypes assemble into functional heteromeric complexes. Nature 1998;396:683–687.

    Article  CAS  PubMed  Google Scholar 

  60. Nakao K, Ogawa Y, Suga S, Imura H. Molecular biology and biochemistry of the natriuretic peptide system. II: Natriuretic peptide receptors. J. Hypertens. 1992;10:1111–1114.

    Article  CAS  PubMed  Google Scholar 

  61. Nakao K, Ogawa Y, Suga S, Imura H. Molecular biology and biochemistry of the natriuretic peptide system. I: Natriuretic peptides. J. Hypertens. 1992;10:907–912.

    CAS  PubMed  Google Scholar 

  62. Chang MS, Lowe DG, Lewis M, Hellmiss R, Chen E. Goeddel DV. Differential activation by atrial and brain natriuretic peptides of two different receptor guanylate cyclases. Nature 1989;341:68–72.

    Article  CAS  PubMed  Google Scholar 

  63. Schulz S, Singh S, Bellet RA, et al. The primary structure of a plasma membrane guanylate cyclase demonstrates diversity within this new receptor family. Cell 1989;58:1155–1162.

    Article  CAS  PubMed  Google Scholar 

  64. Lowe DG, Chang MS, Hellmiss R, et al. Human atrial natriuretic peptide receptor defines a new REF digm for second messenger signal transduction. Embo J. 1989;8:1377–1384.

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Fuller F, Porter JG, Arfsten AE, et al. Atrial natriuretic peptide clearance receptor. Complete sequence and functional expression of cDNA clones. J. Biol. Chem. 1988;263:9395–9401.

    CAS  PubMed  Google Scholar 

  66. Lowe DG, Camerato TR, Goeddel DV. cDNA sequence of the human atrial natriuretic peptide clearance receptor. Nucleic Acids Res. 1990;18:3412.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Chinkers M, Garbers DL. The protein kinase domain of the ANP receptor is required for signaling. Science 1989;245:1392–1394.

    Article  CAS  PubMed  Google Scholar 

  68. Kishimoto I, Yoshimasa T, Suga S, et al. Natriuretic peptide clearance receptor is transcriptionally down-regulated by b2-adrenergic stimulation in vascular smooth muscle cells. J. Biol. Chem. 1994;269:28300–28308.

    CAS  PubMed  Google Scholar 

  69. Kishimoto I, Nakao K, Suga S, et al. Downregulation of C-receptor by natriuretic peptides via ANP-B receptor in vascular smooth muscle cells. Amer. J. Physiol. 1993;265:H1373–1379.

    CAS  PubMed  Google Scholar 

  70. Suga S, Nakao K, Hosoda K, et al. Receptor selectivity of natriuretic peptide family, atrial natriuretic peptide, brain natriuretic peptide, and Gtype natriuretic peptide. Endocrinology 1992;130:229–239.

    CAS  PubMed  Google Scholar 

  71. Koller KJ, Lowe DG, Bennett GL, et al. Selective activation of the B natriuretic peptide receptor by C-type natriuretic peptide (CNP). Science 1991;252:120–123.

    Article  CAS  PubMed  Google Scholar 

  72. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673–4680.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Gardner J, SeqVu. The Garvan Institute of Medical Research, 384 Victoria Rd., Darlinghurst NSW 2010, Sydney Australia, Sydney. Australia, 1998.

  74. Felsenstein J. Inferring phylogenies from protein sequences by parsimony, distance, and likelihood methods. Methods Enzymol. 1996;266:418–427.

    Article  CAS  PubMed  Google Scholar 

  75. Page RD. TreeView: An application to display phylogenetic trees on personal computers. Comput. Appl. Biosci. 1996;12:357–358.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published: June 10, 1999

Rights and permissions

Reprints and permissions

About this article

Cite this article

Felder, C.B., Graul, R.C., Lee, A.Y. et al. The venus flytrap of periplasmic binding proteins: An ancient protein module present in multiple drug receptors. AAPS PharmSci 1, 2 (1999). https://doi.org/10.1208/ps010202

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/ps010202

Keywords

Navigation