Agmatine: Biological role and therapeutic potentials in morphine analgesia and dependence

Abstract

Agmatine is an amine that is formed by decarboxylation of L-arginine by the enzyme arginine decarboxylase (ADC) and hydrolyzed by the enzyme agmatinase to putrescine. Agmatine binds to several target receptors in the brain and has been proposed as a novel neuromodulator. In animal studies, agmatine potentiated morphine analgesia and reduced dependence/withdrawal. While the exact mechanism is not clear, the interactions with N-methyl-D-aspartate (NMDA) receptors, α2-adrenergic receptors, and intracellular cyclic adenosine monophosphate (cAMP) signaling have been proposed as possible targets. Like other monoamine transmitter molecules, agmatine is rapidly metabolized in the periphery and has poor penetration into the brain, which limits the use of agmatine itself as a therapeutic agent. However, the development of agmatinase inhibitors will offer a useful method to increase endogenous agmatine in the brain as a possible therapeutic approach to potentiate morphine analgesia and reduce dependence/ withdrawal. This review provides a succinct discussion of the biological role/therapeutic potential of agmatine during morphine exposure/pain modulation, with an extensive amount of literature cited for further details.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Li G, Regunathan S, Barrow CJ, Eshraghi J, Cooper R, Reis DJ. Agmatine: an endogenous clonidine-displacing substance in the brain.Science. 1994;263:966–969.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Piletz JE, chikkala DN, Ernsberger P. Comparison of the properties of agmatine and endogenous clonidine-displacing substance at imidazoline and alpha-2 adrenergic receptors.J Pharmacol Exp Ther. 1995;272:581–587.

    CAS  PubMed  Google Scholar 

  3. 3.

    Pinthong D, Hussain JF, Kendall DA, Wilson VG. Comparison of the interaction of agmatine and crude methanolic extracts of bovine lung and brain with alpha 2-adrenoceptor binding sites.Br J Pharmacol. 1995;115:689–695.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Pinthong D, Wright IK, Hanmer C, et al. Agmatine recognizes alpha 2-adrenoceptor binding sites but neither activates nor inhibits alpha 2-adrenoceptors.Naunyn Schmiedebergs Arch Pharmacol. 1995;351:10–16.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Reis DJ, Regunathan S. Is agmatine a novel neurotransmitter in brain?Trends Pharmacol Sci. 2000;21:187–193.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Wang H, Regunathan S, Youngson C, Bramwell S, Reis DJ. An antibody to agmatine localizes the amine in bovine adrenal chromaffin cells.Neurosci Lett. 1995;183:17–21.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Otake K, Ruggiero DA, Regunathan S, Wang H, Milner TA, Reis DJ. Regional localization of agmatine in the rat brain: an immunocytochemical study.Brain Res. 1998;787:1–14.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Yang X-C, Reis DJ. Agmatine selectively blocks the NMDA subclass of glutamate receptor channels in cultured mouse hippocampal neurons.J Pharmacol Exp Ther. 1999;288:544–549.

    CAS  PubMed  Google Scholar 

  9. 9.

    Gorbatyuk OS, Milner TA, Wang G, Regunathan S, Reis DJ. Localization of agmatine in vasopressin and oxytocin neurons of the rat hypothalamic paraventricular and supraoptic nuclei.Exp Neurol. 2001;171:235–245.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Li G, Regunathan S, Reis DJ. Agmatine is synthesized by a mitochondrial arginine decarboxylase in rat brain.Ann NY Acad Sci. 1995;763:325–329.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Lortie MJ, Novotny WF, Peterson OW, et al. Agmatine, a bioactive metabolite of arginine.J Clin Invest. 1996;97:413–420.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Zhu MY, Iyo A, Piletz JE, Regunathan S. Expression of human arginine decarboxylase, the biosynthetic enzyme for agmatine.Biochim Biophys Acta. 2004;1670:156–164.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Sastre M, Regunathan S, Reis DJ. Agmatinase activity in rat brain: a metabolic pathway for the degradation of agmatine.J Neurochem. 1996;67:1761–1765.

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Holt A, Baker GB. Metabolism of agmatine (clonidine-displacing substance) by diamine oxidase and the possible implications for studies of imidazoline receptors.Prog Brain Res. 1995;106:187–197.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Olmos G, DeGregorio-Rocasolano N, Regalado MP, et al. Protection by imidazol(ine) drugs and agmatine of glutamate-induced neurotoxicity in cultured cerebellar granule cells through blockade of NMDA receptor.Br J Pharmacol. 1999;127:1317–1326.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Zhu MY, Piletz JE, Halaris A, Regunathan S. Effect of agmatine against cell death induced by NMDA and glutamate in neurons and PC12 cells.Cell Mol Neurobiol. 2003;23:865–872.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Gilad GM, Gilad VH. Accelerated functional recovery and neuroprotection by agmatine after spinal cord ischemia in rats.Neurosci Lett. 2000;296:97–100.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Gilad GM, Gilad VH, Rabey JM. Arginine and ornithine decarboxylation in rodent brain—coincidental changes during development and after ischemia.Neurosci Lett. 1996;216:33–36.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Kim JH, Yenari MA, Giffard RG, Cho SW, Park KA, Lee JE. Agmatine reduces infarct area in a mouse model of transient focal cerebral ischemia and protects cultured neurons from ischemia-like injury.Exp Neurol. 2004;189:122–130.

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Fairbanks CA, Schreiber KL, Brewer KL, et al. Agmatine reverses pain induced by inflammation, neuropathy, and spinal cord injury.Proc Natl Acad Sci USA. 2000;97:10584–10589.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Feng Y, Piletz JE, Leblanc MH. Agmatine suppresses nitric oxide production and attenuates hypoxic-ischemic brain injury in neonatal rats.Pediatr Res. 2002;52:606–611.

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Bence AK, Worthen DR, Stables JP, Crooks PA. An in vivo evaluation of the antiseizure activity and acute neurotoxicity of agmatine.Pharmacol Biochem Behav. 2003;74:771–775.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Su RB, Wei XL, Zheng JQ, Liu Y, Lu XQ, Li J. Anticonvulsive effect of agmatine in mice.Pharmacol Biochem Behav. 2004;77:345–349.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Aricioglu F, Kan B, Yillar O, Korcegez E, Berkman K. Effect of agmatine on electrically and chemically induced seizures in mice.Ann NY Acad Sci. 2003;1009:141–146.

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Kolesnikov Y, Jain S, Pasternak GW. Modulation of opioid analgesia by agmatine.Eur J Pharmacol. 1996;296:17–22.

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Aricioglu-Kartal F, Uzbay IT. Inhibitory effect of agmatine on naloxane-precipitated abstinence syndrome.Life Sci. 1997;61:1775–1781.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Fairbanks CA, Brewer KL, Stone LS, et al. The behavioral and neuroprotective effects of agmatine in different models of pain and neuronal injury in rodents.Soc Neurosci Abstr. 1998;24:1253.

    Google Scholar 

  28. 28.

    Li J, Li X, Pei G, Qin BY. Agmatine inhibited tolerance to and dependence on morphine in guinea pig ileum in vitro.Zhongguo Yao Li Xue Bao. 1998;19:564–568.

    PubMed  Google Scholar 

  29. 29.

    Nguyen HO, Goracke-Postle CJ, Kaminski LL, Overland AC, Morgan AD, Fairbanks CA. Neuropharmacokinetic and dynamic studies of agmatine (decarboxylated arginine).Ann NY Acad Sci. 2003;1009:82–105.

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Arteni NS, Lavinsky D, Rodrigues AL, Frison VB, Netto CA. Agmatine facilitates memory of an inhibitory avoidance task in adult rats.Neurobiol Learn Mem. 2002;78:465–469.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Lavinsky D, Arteni NS, Netto CA. Agmatine induces anxiolysis in the elevated plus maze task in adult rats.Behav Brain Res. 2003;141:19–24.

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Zomkowski AD, Hammes L, Calixto JB, Lin J, Santos AR, Rodrigues AL. Agmatine produces antidepressant-like effects in two models of depression in mice.Neuroreport. 2002;13:387–391.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Sauve Y, Reader TA. Effects of alpha-methyl-p-tyrosine on monoamines and catecholamine receptors in rat cerebral cortex and neostriatum.Neurochem Res. 1988;13:807–815.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Dias Elpo Zomkowski A, Oscar Rosa A, Lin J, Santos AR, Calixto JB, Lucia Severo Rodrigues A. Evidence for serotonin receptor subtypes involvement in agmatine antidepressant like-effect in the mouse forced swimming test.Brain Res. 2004;1023:253–263.

    Article  PubMed  Google Scholar 

  35. 35.

    Li J, Li X, Pei G, Qin BY. Effects of agmatine on tolerance to and substance dependence on morphine in mice.Zhongguo Yao Li Xue Bao. 1999;20:232–238.

    PubMed  Google Scholar 

  36. 36.

    Uzbay IT, Yesilyurt O, Celik T, Ergun H, Isimer A. Effects of agmatine on ethanol withdrawal syndrome in rats.Behav Brain Res. 2000;107:153–159.

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Aricioglu F, Means A, Regunathan S. Effect of agmatine on the development of morphine dependence in rats: potential role of cAMP system.Eur J Pharmacol. 2004;504:191–197.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Aricioglu F, Paul IA, Regunathan S. Agmatine reduces only peripheral-related behavioral signs, not the central signs, of morphine withdrawal in nNOS deficient transgenic mice.Neurosci Lett. 2004;354:153–157.

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Morgan AD, Campbell UC, Fons RD, Carroll ME. Effects of agmatine on the escalation of intravenous cocaine and fentanyl self-administration in rats.Pharmacol Biochem Behav. 2002;72:873–880.

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Aricioglu F, Korcegez E, Bozkurt A, Ozyalcin S. Effect of agmatine on acute and mononeuropathic pain.Ann N Y Acad Sci. 2003;1009:106–115.

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Onal A, Delen Y, Ulker S, Soykan N. Agmatine attenuates neuropathic pain in rats: possible mediation of nitric oxide and noradrenergic activity in the brainstem and cerebellum.Life Sci. 2003;73:413–428.

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Yu CG, Fairbanks CA, Wilcox GL, Yezierski RP. Effects of agmatine, interleukin-10, and cyclosporin on spontaneous pain behavior after excitotoxic spinal cord injury in rats.J Pain 2003;4:129–140.

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Santos AR, Gadotti VM, Oliveira GL, et al. Mechanisms involved in the antinociception caused by agmatine in mice.Neuropharmacology. 2005;48:1021–1034.

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Bradley KJ, Headley PM. Effect of agmatine on spinal nociceptive reflexes: lack of interaction with alpha2-adrenoceptor or mu-opioid receptor mechanisms.Eur J Pharmacol. 1997;331:133–138.

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Reynolds IJ. Arcaine uncovers dual interactions of polyamines with the n-methyl-d-aspartate receptor.J Pharmacol Exp Ther. 1990;255:1001–1007.

    CAS  PubMed  Google Scholar 

  46. 46.

    Gibson DA, Harris BR, Rogers DT, Littleton JM. Radioligand binding studies reveal agmatine is a more selective antagonist for a polyamine-site on the NMDA receptor than arcaine or ifenprodil.Brain Res. 2002;952:71–77.

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Askalany AR, Yamakura T, Petrenko AB, Kohno T, Sakimura K, Baha H. Effect of agmatine on heteromeric N-methyl-d-aspartate receptor channels.Neurosci Res. 2005;52:387–392.

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Trujillo KA, Akil H. Inhibition of opiate tolerance by non-competitive N-methyl-D-aspartate receptor antagonists.Brain Res. 1994;633:178–188.

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Jurkiewicz NH, do Carmo LG, Hirata H, da Costa Santos W, Jurkiewicz A. Functional properties of agmatine in rat vas deferens.Eur J Pharmacol. 1996;307:299–304.

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Gatti PJ, Hill KJ, Da Silva AM, Norman WP, Gillis RA. Central nervous system site of action for the hypotensive effect of clonidine in the cat.J Pharmacol Exp Ther. 1988;245:373–380.

    CAS  PubMed  Google Scholar 

  51. 51.

    Hansson BG, Hokfelt B. Changes in blood pressure, plasma catecholamines and plasma renin activity during and after treatment with tiamenidine and clonidine.Br J Clin Pharmacol. 1981;11:73–77.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Hieble JP, Kolpak DC. Mediation of the hypotensive action of systemic clonidine in the rat by alpha 2-adrenoceptors.Br J Pharmacol. 1993;110:1635–1639.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Sun MK, Regunathan S, Reis DJ. Cardiovascular responses to agmatine, a clonidine-displacing substance, in anesthetized rat.Clin Exp Hypertens. 1995;17:115–128.

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Szabo B, Urban R, Limberger N, Starke K. Cardiovascular effects of agmatine, a “clonidine-displacing substance”, in conscious rabbits.Naunyn Schmiedebergs Arch Pharmacol. 1995;351:268–273.

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Raasch W, Schafer U, Qadri F, Dominiak P. Agmatine, an endogenous ligand at imidazoline binding sites, does not antagonize the clonidine-mediated blood pressure reaction.Br J Pharmacol. 2002;135:663–672.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Tokuyama S, Zhu H, Oh S, Ho IK, Yamamoto T. Further evidence for a role of NMDA receptors in the locus coeruleus in the expression of withdrawal syndrome from opioids.Neurochem Int. 2001;39:103–109.

    CAS  Article  PubMed  Google Scholar 

  57. 57.

    Wang G, Gorbatyuk O, Dayanithi G, et al. Evidence for endogenous agmatine in hypothalamo-neurohypophysial tract and its modulation on vasopressin release and Ca2+ channels.Brain Res. 2002;932:25–36.

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Zheng JQ, Weng XC, Gai XD, Li J, Xiao WB. Mechanism underlying blockade of voltage-gated calcium channels by agmatine in cultured rat hippocampal neurons.Acta Pharmacol Sin. 2004;25:281–285.

    CAS  PubMed  Google Scholar 

  59. 59.

    Feng Y, Leblanc MH, Regunathan S. Agmatine reduces extracellular glutamate during pentylenetetrazole-induced seizures in rat brain: a potential mechanism for the anticonvulsive effects.Neurosci Lett. 2005;390:129–133.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Regunathan S, Youngson C, Raasch W, Wang H, Reis DJ. Imidazoline receptors and agmatine in blood vessels: a novel system inhibiting vascular smooth muscle proliferation.J Pharmacol Exp Ther. 1996;276:1272–1282.

    CAS  PubMed  Google Scholar 

  61. 61.

    Satriano J, Matsufuji S, Murakami Y, et al. Agmatine suppresses proliferation by frameshift induction of antienzyme and attenuation of cellular polyamine levels.J Biol Chem. 1998;273:15313–15316.

    CAS  Article  PubMed  Google Scholar 

  62. 62.

    Abe K, Abe Y, Saito H. Agmatine suppresses nitric oxide production in microglia.Brain Res. 2000;872:141–148.

    CAS  Article  PubMed  Google Scholar 

  63. 63.

    Satriano J, Schwartz D, Ishizuka S, et al. Suppression of inducible nitric oxide generation by agmatine aldehyde: beneficial effects in sepsis.J Cell Physiol. 2001;188:313–320.

    CAS  Article  PubMed  Google Scholar 

  64. 64.

    Regunathan S, Piletz JE. Regulation of inducible nitric oxide synthase and agmatine synthesis in macrophages and astrocytes.Ann NY Acad Sci. 2003;1009:20–29.

    CAS  Article  PubMed  Google Scholar 

  65. 65.

    Li J, Li X, Pei G, Qin BY. Influence of agmatine in adaptation of cAMP signal transduction system of opiate receptors.Zhongguo Yao Li Xue Bao. 1999;20:592–596.

    CAS  PubMed  Google Scholar 

  66. 66.

    Nestler EJ. Molecular neurobiology of addiction.Am J Addict. 2001;10:201–217.

    CAS  Article  PubMed  Google Scholar 

  67. 67.

    Copeland RL, Pradhan SN, Dillon-Carter O, Chuang DM. Rebound increase of basal cAMP level in NG108-15 cells during chronic morphine treatment: effects of naloxane and chloramphenicol.Life Sci. 1989;44:1107–1116.

    CAS  Article  PubMed  Google Scholar 

  68. 68.

    Mehta CS, Strada SJ. Effects of acute and continuous administration of morphine on the cAMP response induced by norepinephrine in rat brain slices.Life Sci. 1994;55:35–42.

    CAS  Article  PubMed  Google Scholar 

  69. 69.

    Avidor-Reiss T, Bayewitch M, Levy R, Matus-Leibovitch N, Nevo I, Vogel Z. Adenylylcyclase supersensitization in mu-opioid receptortransfected Chinese hamster ovary cells following chronic opioid treatment.J Biol Chem. 1995;270:29732–29738.

    CAS  Article  PubMed  Google Scholar 

  70. 70.

    Guitart X, Nestler EJ. Second messenger and protein phosphorylation mechanisms underlying opiate addiction: studies in the rat locus coeruleus.Neurochem Res. 1993;18:5–13.

    CAS  Article  PubMed  Google Scholar 

  71. 71.

    Lane-Ladd SB, Pineda J, Boundy VA, et al. CREB (cAMP response element-binding protein) in the locus coeruleus: biochemical, physiological, and behavioral evidence for a role in opiate dependence.J Neurosci. 1997;17:7890–7901.

    CAS  PubMed  Google Scholar 

  72. 72.

    Feng Y, Leblanc MH. Effect of agmatine on the time course of brain inflammatory cytokines after injury in rat pups.Ann NY Acad Sci. 2003;1009:152–156.

    CAS  Article  PubMed  Google Scholar 

  73. 73.

    Halaris A, Zhu H, Feng Y, Piletz JE. Plasma agmatine and platelet imidazoline receptors in depression.Ann NY Acad Sci. 1999;881:445–451.

    CAS  Article  PubMed  Google Scholar 

  74. 74.

    Aricioglu-Kartal F, Regunathan S. Effect of chronic morphine treatment on the biosynthesis of agmatine in rat brain and other tissues.Life Sci. 2002;71:1695–1701.

    CAS  Article  PubMed  Google Scholar 

  75. 75.

    Iyo AH, Zhu MY, Ordway GA, Regunathan S. Expression of arginine decarboxylase in brain regions and neuronal cells.J Neurochem. 2006;96:1042–1050.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Fairbanks CA, Kaminski LL, Nguyen HO, et al. Pretreatment with antisera raised against agmatine sensitizes mice to plasticity-mediated events [abstract].Soc Neurosci Abstr [serial online]. 2001;27.

  77. 77.

    Vanderah TW, Wild KD, Takemori AE, et al. Modulation of morphine antinociception by swim-stress in the mouse: involvement of supraspinal opioid delta-2 receptors.J Pharmacol Exp Ther. 1993;267:449–455.

    CAS  PubMed  Google Scholar 

  78. 78.

    Huang M-J, Regunathan S, Botta M, et al. Structure-activity analysis of guanidine group in agmatine for brain agmatinase.Ann NY Acad Sci. 2003;1009:52–63.

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Soundar Regunathan.

Additional information

Published: July 21, 2006

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Regunathan, S. Agmatine: Biological role and therapeutic potentials in morphine analgesia and dependence. AAPS J 8, E479–E484 (2006). https://doi.org/10.1208/aapsj080356

Download citation

Keywords

  • agmatine
  • morphine
  • opioids
  • analgesia
  • withdrawal