Skip to main content
Log in

Pharmacokinetic and pharmacodynamic effects of high-dose monoclonal antibody therapy in a rat model of immune thrombocytopenia

  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Intravenous administration of pooled, polyvalent human immunoglobulin (IVIG) has been used for over 20 years as a therapy for immune thrombocytopenia (ITP). IVIG is available in limited quantities, and clinical preparations have been associated with the transfer of human pathogens. We have proposed that high-dose monoclonal antibody may be used in lieu of IVIG to achieve beneficial effects in the treatment of ITP. The current study investigates the effects of high-dose monoclonal antibody therapy in a rat model of ITP. Hybridoma cells secreting a murine monoclonal antiplatelet antibody (7E3) and murine monoclonal anti-methotrexate IgG (AMI) were grown in serum-free media. Next, 7E3, 8 mg kg−1, was administered intravenously to rats following pretreatment with saline or AMI (1 g kg−1 IV). AMI and 7E3 plasma concentrations were determined via enzyme-linked immunosorbent assay, and platelet count was determined with a Cell-Dyne hematology analyzer. Severe, transient thrombocytopenia was induced by 7E3. Platelet counts dropped to ≈8% of initial values within 1 hour after 7E3 administration. AMI pretreatment dramatically affected 7E3-induced thrombocytopenia, significantly altering the time course of throm-bocytopenia (P<.05) and significantly decreasing the severity of 7E3-induced thrombocytopenia (ie, following AMI pretreatment, nadir platelet count was greater than 8-fold that of the control group,P<.05). In addition, AMI pretreatment induced a 57% increase in 7E3 clearance (1.13±0.13 mL h−1 kg−1 vs 0.72±0.08 mL h−1 kg−1,P<.05). Consequently, high-dose monoclonal antibody therapy attenuated thrombocytopenia and produced a moderate increase in the clearance of antiplatelet antibodies in a rat model of ITP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. George JN, Woolf SH, Raskob GE, et al. Idiopathic throm bocytopenic purpura: a practice guideline developed by explicit methods for the American Society of Hematology.Blood. 1996;88:3–40.

    PubMed  CAS  Google Scholar 

  2. Imbach P, Barandun S, d’Apuzzo V, et al. High-dose intravenous gammaglobulin for idiopathic throm bocytopenic purpura in childhood.Lancet. 1981;1:1228–1231.

    Article  PubMed  CAS  Google Scholar 

  3. Bussel JB, Hilgartner MW. Intravenous immunoglobulin therapy of idiopathic thrombocytopenic purpura in childhood and adolescence.Hematol Oncol Clin North Am. 1987;1:465–482.

    PubMed  CAS  Google Scholar 

  4. Adams JR, Nathan DP, Bennett CL. Pharmacoeconomics of therapy for ITP: steroids, i.v.Ig, anti-D, and splenectomy.Blood Rev. 2002;16:65–67.

    Article  PubMed  CAS  Google Scholar 

  5. Gomperts ED. Gammagard and reported hepatitis C virus episodes.Clin Ther. 1996;18:3–8.

    Article  PubMed  Google Scholar 

  6. Milgrom H. Shortage of intravenous immunoglobulin.Ann Allergy Asthma Immunol. 1998;81:97–100.

    Article  PubMed  CAS  Google Scholar 

  7. Fehr J, Hofmann V, Kappeler U. Transient reversal of thrombocytopenia in idiopathic thrombocytopenic purpura by high-sose intravenous gamma globulin.N Engl J Med. 1982;306:1254–1258.

    Article  PubMed  CAS  Google Scholar 

  8. Hansen RJ, Balthasar JP. Effects of intravenous immunoglobulin on platelet count and antiplatelet antibody disposition in a rat model of immune thrombocytopenia.Blood. 2002;100:2087–2093.

    PubMed  CAS  Google Scholar 

  9. Berchtold P, Dale GL, Tani P, McMillan R. Inhibition of autoantibody binding to platelet glycoprotein IIb/IIIa by antiidiotypic antibodies in intravenous gammaglobulin.Blood. 1989;74:2414–2417.

    PubMed  CAS  Google Scholar 

  10. Salama A, Mueller-Eckhardt C, Kiefel V. Effect of intravenous immunoglobulin in immune thrombocytopenia.Lancet. 1983;2:193–195.

    Article  PubMed  CAS  Google Scholar 

  11. Ballow M. Mechanisms of action of intravenous immune serum globulin in autoimmune and inflammatory diseases.J Allergy Clin Immunol. 1997;100:151–157.

    Article  PubMed  CAS  Google Scholar 

  12. Tovo PA, Miniero R, Fiandino G, Saracco P, Messina M. Fc-depleted vs intact intravenous immunoglobulin in chronic ITP.J Pediatr. 1984;105:676–677.

    PubMed  CAS  Google Scholar 

  13. Debre M, Bonnet MC, Fridman WH, et al. Infusion of Fc gamma fragments for treatment of children with acute immune thrombocytopenic purpura.Lancet. 1993;342:945–949.

    Article  PubMed  CAS  Google Scholar 

  14. Lobo ED, Soda DM, Balthasar JP. Application of pharmacokineticpharmacodynamic modeling to predict the kinetic and dynamic effects of anti-methotrexate antibodies in mice.J Pharm Sci. 2003;92:1665–1676.

    Article  PubMed  CAS  Google Scholar 

  15. Hansen RJ, Balthasar JP. Pharmacokinetics, pharmacodynamics, and platelet binding of an anti-glycoprotein IIb/IIIa monoclonal antibody (7E3) in the rat: a quantitative rat model of immune thrombocytopenic purpura.J Pharmacol Exp Ther. 2001;298:165–171.

    PubMed  CAS  Google Scholar 

  16. Tayab ZR, Balthasar JP. Development and validation of enzymelinked immunosorbent assay for quantification of anti-methotrexate IgG and Fab in mouse and rat plasma.J Immunoassay Immunochem. 2004;25:335–344.

    PubMed  CAS  Google Scholar 

  17. Harrington WJ, Minnich V, Hollingsworth JW, Moore CV. Demonstration of a thrombocytopenic factor in the blood of patients with thrombocytopenic purpura.J Lab Clin Med. 1951;38:1–10.

    PubMed  CAS  Google Scholar 

  18. Shulman NR, Marder VJ, Weinrach RS. Similarities between known antiplatelet antibodies and the factor responsible for thrombocytopenia in idiopathic purpura: physiologic, serologic and isotopic studies.Ann N Y Acad Sci. 1965;124:499–542.

    Article  PubMed  CAS  Google Scholar 

  19. van Leeuwen EF, van der Ven JT, Engelfriet CP, von dem Borne AE. Specificity of autoantibodies in autoimmune thrombocytopenia.Blood. 1982;59:23–26.

    PubMed  Google Scholar 

  20. Woods VL Jr, Kurata Y, Montgomery RR, et al. Autoantibodies against platelet glycoprotein Ib in patients with chronic immune thrombocytopenic purpura.Blood. 1984;64:156–160.

    PubMed  Google Scholar 

  21. Fujisawa K, Tani P, McMillan R. Platelet-associated antibody to glycoprotein IIb/IIIa from chronic immune thrombocytopenic purpura patients often binds to divalent cation-dependent antigens.Blood. 1993;81:1284–1289.

    PubMed  CAS  Google Scholar 

  22. Hou M, Stockelberg D, Kutti J, Wadenvik H. Immunoglobulins targeting both GPIIb/IIIa and GPIb/IX in chronic idiopathic thrombocytopenic purpura (ITP): evidence for at least two different IgG antibodies.Br J Haematol. 1997;98:64–67.

    Article  PubMed  CAS  Google Scholar 

  23. Snyder HW, Jr, Cochran SK Jr, Balint JP Jr, et al. Experience with protein A-immunoadsorption in treatment-resistant adult immune throm bocytopenic purpura.Blood. 1992;79:2237–2245.

    PubMed  Google Scholar 

  24. Guthrie TH Jr, Oral A. Immune thrombocytopenia purpura: a pilot study of staphylococcal protein A immunomodulation in refractory patients.Semin Hamatol. 1989;26:3–9.

    Google Scholar 

  25. Brambell FW, Hemmings WA, Morris IG. A theoretical model of gamma-globulin catabolism.Nature. 1964;203:1352–1354.

    Article  PubMed  CAS  Google Scholar 

  26. Jones EA, Waldmann TA. The mechanism of intestinal uptake and transcellular transport of IgG in the neonatal rat.J Clin Invest. 1972;51:2916–2927.

    Article  PubMed  CAS  Google Scholar 

  27. Simister NE, Mostov KE. An Fc receptor structurally related to MHC class I antigens.Nature. 1989;337:184–187.

    Article  PubMed  CAS  Google Scholar 

  28. Israel EJ, Wilsker DF, Hayes KC, Schoenfeld D, Simister NE. Increased clearance of IgG in mice that lack beta 2-microglobulin: possible protective role of FcRn.Immunology. 1996;89:573–578.

    Article  PubMed  CAS  Google Scholar 

  29. Ghetie V, Hubbard JG, Kim JK, Tsen MF, Lee Y, Ward ES. Abnormally short serum half-lives of IgG in beta 2-microglobulindeficient mice.Eur J Immunol. 1996;26:690–696.

    Article  PubMed  CAS  Google Scholar 

  30. Junghans RP, Anderson CL. The protection receptor for IgG catabolism is the beta2-microglobulin-containing neonatal intestinal transport receptor.Proc Natl Acad Sci USA. 1996;93:5512–5516.

    Article  PubMed  CAS  Google Scholar 

  31. Hansen RJ, Balthasar JP. Intravenous immunoglobulin mediates an increase in anti-platelet antibody clearance via the FcRn receptor.Thromb Haemost. 2002;88:898–899.

    PubMed  CAS  Google Scholar 

  32. Hansen RJ, Balthasar JP. Pharmacokinetic/pharmacodynamic modeling of the effects of intravenous immunoglobulin on the disposition of antiplatelet antibodies in a rat model of immune thrombocytopenia.J Pharm Sci. 2003;92:1206–1215.

    Article  PubMed  CAS  Google Scholar 

  33. Bussel JB. Another interaction of the FcR system with IVIG.Thromb Haemost. 2002;88:890–891.

    PubMed  CAS  Google Scholar 

  34. Vaughn DE, Bjorkman PJ. High-affinity binding of the neonatal Fc receptor to its IgG ligand requires receptor immobilization.Biochemistry. 1997;36:9374–9380.

    Article  PubMed  CAS  Google Scholar 

  35. Lobo ED, Hansen RJ, Balthasar JP. Antibody pharmacokinetics and pharmacodynamics.J Pharm Sci. 2004;93:2645–2668.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph P. Balthasar.

Additional information

Published: January 13, 2006

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, F., Tayab, Z.R. & Balthasar, J.P. Pharmacokinetic and pharmacodynamic effects of high-dose monoclonal antibody therapy in a rat model of immune thrombocytopenia. AAPS J 7, 87 (2005). https://doi.org/10.1208/aapsj070487

Download citation

  • Received:

  • Accepted:

  • DOI: https://doi.org/10.1208/aapsj070487

Keywords

Navigation