Skip to main content

Advertisement

Log in

Transport systems for opioid peptides in mammalian tissues

  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Transmembrane transport of endogenous as well as synthetic opioid peptides is a critical determinant of pharmacokinetics and biologic efficacy of these peptides. This transport process influences the distribution of opioid peptides across the blood-brain barrier and their elimination from the body. A multitude of transport systems that recognize opioid peptides as substrates have been characterized at the functional level, and these transport systems are expressed differentially at different sites in the body. Many of these transport systems have been identified at the molecular level. These include the H+-coupled peptide transporters PEPT1 and PEPT2, the adenosine triphosphate-dependent efflux transporters P-glycoprotein and multidrug resistance-related protein 2, and several members of the organic anion-transporting polypeptide gene family. There are however many additional transport systems that are known to transport opioid peptides but their molecular identities still remain unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vaccarino AL, Kastin AJ. Endogenous opiates: 2000.Peptides. 2001;22:2257–2328.

    Article  PubMed  CAS  Google Scholar 

  2. Smith QR. A review of blood-brain barrier transport techniques.Methods Mol Med. 2003;89:193–208.

    PubMed  CAS  Google Scholar 

  3. Banks WA, Kastin AJ. Peptide transport systems for opitates across the blood-brain barrier.Am J Physiol. 1990;259:E1-E10.

    PubMed  CAS  Google Scholar 

  4. Kastin AJ, Fasold MB, Smith RR, Horner KA, Zadina JE. Saturable brain-to-blood transport of endomorphins.Exp Brain Res. 2001;139:70–75.

    Article  PubMed  CAS  Google Scholar 

  5. Somogyvari-Vigh A, Kastin AJ, Liao J, Zadina JE, Pan W. Endomorphins exit the brain by a saturable efflux system at the basolateral surface of cerebral endothelial cells.Exp Brain Res. 2004;156:224–230.

    Article  PubMed  CAS  Google Scholar 

  6. Fiori A, Cardelli P, Negri L, Savi MR, Strom R, Erspamer V. Deltorphin transport across the blood-brain barrier.Proc. Natl Acad Sci USA. 1997;94:9469–9474.

    Article  PubMed  CAS  Google Scholar 

  7. Hu H, Miyauchi S, Bridges CC, Smith SB, Ganapathy V. Identification of a novel Na+-and Cl-coupled transport system for endogenous opioid peptides in retinal pigment epithelium and induction of the transport system by HIV-1 Tat.Biochem J. 2003;375:17–22.

    Article  PubMed  CAS  Google Scholar 

  8. Leibach FH, Ganapathy V. Peptide transporters in the intestine and the kidneyAnnu Rev Nutr. 1996;16:99–119.

    Article  PubMed  CAS  Google Scholar 

  9. Zhao K, Luo G, Zhao GM, Schiller PW, Szeto HH. Transcellular transport of a highly polar 3+ net charge opioid tetrapeptide.J Pharmacol Exp Ther. 2003;304:425–432.

    Article  PubMed  CAS  Google Scholar 

  10. Fujita T, Kishida T, Okada N, Ganapathy V, Leibach FH, Yamamoto A. Interaction of kyotorphin and brain peptide transporter in synaptosomes prepared from rat cerebellum: implications of high affinity type H+/peptide transporter PEPT2-mediated transport system.Neurosci. Lett. 1999;271:117–120.

    Article  PubMed  CAS  Google Scholar 

  11. Fujita T, Kishida T, Wada M, et al. Functional characterization of brain peptide transporter in rat cerebral cortex: identification of the high-affinity type H+/peptide transporter PEPT2.Brain Res. 2004;997:52–61.

    Article  PubMed  CAS  Google Scholar 

  12. Cordon-Cardo C, O’Brien JP, Casals D, et al. Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites.Proc Natl Acad Sci USA. 1989;86:695–698.

    Article  PubMed  CAS  Google Scholar 

  13. Schinkel AH, Wagenaar E, van Deemter L, Mol CA, Borst P. Absence of the mdr1a P-glycoprotein in mice affects tissue distribution and pharmacokinetics of dexamethasone, digoxin, and cyclosporin A.J Clin Invest. 1995;96:1698–1705.

    Article  PubMed  CAS  Google Scholar 

  14. Thompson SJ, Koszdin K, Bernards CM. Opiate-induced analgesia is increased and prolonged in mice lacking P-glycoprotein.Anesthesiology. 2000;92:1392–1399.

    Article  PubMed  CAS  Google Scholar 

  15. King M, Su W, Chang A, Zuckerman A, Pasternak GW. Transport of opioids from the brain to the periphery by P-glycoprotein: peripheral actions of central drugs.Nat Neurosci. 2001;4:268–274.

    Article  PubMed  CAS  Google Scholar 

  16. Jonker JW, Wagenaar E, van Deemter L, et al Role of blood-brain barrier P-glycoprotein in limiting brain accumulation and sedative side-effects of asimadoline, a peripherally acting analgaesic drug.Br J Pharmacol. 1999;127:43–50.

    Article  PubMed  CAS  Google Scholar 

  17. Chen C., Pollack GM. Altered disposition and antinociception of [D-penicillamine(2,5)] enkephalin in mdr1a-gene-deficient mice.J Pharmacol Exp Ther. 1998;287:545–552.

    PubMed  CAS  Google Scholar 

  18. Chen C, Pollack GM. Enhanced antinociception of the model opioid peptide [D-penicillamine] enkephalin by P-glycoprotein modulation.Pharm Res. 1999;16:296–301.

    Article  PubMed  CAS  Google Scholar 

  19. Sarkadi B, Muller M, Homolya L, et al. Interaction of bioactive hydrophobics peptides with the human multidrug transporter.FASEB J. 1994;8:766–770.

    PubMed  CAS  Google Scholar 

  20. Oude Elferink RPJ, Zadina J. MDR1 P-glycoprotein transports endogenous opioids peptides.Peptides. 2001;22:2015–2020.

    Article  PubMed  CAS  Google Scholar 

  21. Kastin AJ, Fasold MB, Zadina JE. Endomorphins, Met-enkephalin, Tyr-MIF-1, and the P-glycoprotein efflux system.Drug Metab Dispos. 2002;30:231–234.

    Article  PubMed  CAS  Google Scholar 

  22. Hagenbuch B, Meier PJ. Organic anion transporting polypeptides of the OATP/SLC21 family: phylogenetic classification as OATP/SLCO superfamily, new nomenclature and molecular/functional properties.Pflugers Arch. 2004;447:653–665.

    Article  PubMed  CAS  Google Scholar 

  23. Cattori V, van Montfoort JE, Stieger B, et al. Localization of organic anion transporting polypeptide 4 (Oatp4) in rat liver and comparison of its substrate specificity with Oatp1, Oatp2 and Oatp3.Pflugers Arch. 2001;443:188–195.

    Article  PubMed  CAS  Google Scholar 

  24. Gao B, Hagenbuch B, Kullak-Ublick GA, Benke D, Aguzzi A, Meier PJ. Organic anion-transporting polypeptides mediate transport of opioid peptides across blood-brain barrier.J Pharmacol. Exp Ther. 2000;294:73–79.

    PubMed  CAS  Google Scholar 

  25. Kullaks-Ublick GA, Ismair MG, Stieger B, et al. Organic anion-transporting polypeptide B (OATP-B) and its functional comparison with 3 other OATPs of human liver.Gastroenterology. 2001;120:525–533.

    Article  Google Scholar 

  26. Nozawa T, Tamai I, Sai Y, Nezu J, Tsuji A. Contribution of organic anion transporting polypeptide OATP-C to hepatic elimination of the opioid pentapeptide analogue [D-Ala2, D-Leu5]-enkephalin.J Pharm Pharmacol. 2003;55:1013–1020.

    Article  PubMed  CAS  Google Scholar 

  27. Lee W, Glaeser H, Smith LH, et al. Polymorphisms in human organic anion-transporting polypeptide 1A2 (OATP1A2): implications for altered drug disposition and central nervous system drug entry.J Biol Chem. 2005;280:9610–9617.

    Article  PubMed  CAS  Google Scholar 

  28. Reichel C, Gao B, Van Montfoort J, et al. Localization and function of the organic anion-transporting polypeptide Oatp2 in rat liver.Gastroenterology. 1999;117:688–695.

    Article  PubMed  CAS  Google Scholar 

  29. Konig J, Cui Y, Nies AT, Keppler D. Localization and genomic organization of a new hepatocellular organic anion transporting polypeptide.J Biol Chem. 2000;275:23161–23168.

    Article  PubMed  CAS  Google Scholar 

  30. Konig J, Cui Y, Nies AT, Keppler D. A novel human organic anion transporting polypeptide localized to the basolateral hepatocyte membrane.Am J Physiol Gastrointest Liver Physiol. 2000;278:G156-G164.

    PubMed  CAS  Google Scholar 

  31. Hoffmaster KA, Zamek-Gliszczynski MJ, Pollack GM, Brouwer KL. Hepatobiliary disposition of the metabolically stable opioid peptide [D-Pen2, D-Pen5]-enkephalin (DPDPE): pharmacokinetic consequences of the interplay between multiple transport systems.J Pharmacol Exp Ther. 2004;311:1203–1210.

    Article  PubMed  CAS  Google Scholar 

  32. Hoffmaster KA, Zamek-Gliszczynski MJ, Pollack GM, Brouwer KL. Multiple transport systems mediate the hepatic uptake and biliary excretion of the metabolically stable opioid peptide [D-penicillamine2,5] enkephalin.Drug Metab Dispos. 2005;33:287–293.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadivel Ganapathy.

Additional information

Published: December 29, 2005

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganapathy, V., Miyauchi, S. Transport systems for opioid peptides in mammalian tissues. AAPS J 7, 82 (2005). https://doi.org/10.1208/aapsj070482

Download citation

  • Received:

  • Accepted:

  • DOI: https://doi.org/10.1208/aapsj070482

Keywords

Navigation