Skip to main content
Log in

On some “disadvantages” of the population approach

  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

In a seminal article on population pharmacokinetic modeling, researchers demonstrated how means and variances of pharmacokinetic parameters for a patient population could be inferred from sparse data collected under conditions of routine patient care. But they also identified 4 potential concerns about their methodology: unobserved confounding variables may bias the inferences; conditions under which data are collected may lead to inaccuracies of reporting or recording; correlations among important predictor variables may reduce statistical efficiency; and costs cannot be controlled by principles of study design. Experiences are reviewed that related to those potential disadvantages. A method is presented for diagnosing the possible presence of confounding. A model is constructed and applied that captures the influences of data inaccuracies. An example of selecting from among correlated covariates is summarized. Finally, a methodology for optimal study design is reviewed and applied to an example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sheiner LB, Rosenberg B, Marathe VV. Estimation of population characteristics of pharmacokinetic parameters from routine clinical data.J Pharmacokinet Biopharm. 1977;5:445–479.

    Article  PubMed  CAS  Google Scholar 

  2. Sheiner LB, Rosenberg B, Melmon KL. Modelling of individual pharmacolinetics for computer-aided drug dosage.Comput Biomed Res. 1972;5:411–459.

    Article  PubMed  CAS  Google Scholar 

  3. Mentre' F, Burtin P, Merle' Y, van Bree J, Mallet A, Steimer J-L. Sparse-sampling optimal designs in pharmacokinetics and toxicokinetics.Drug Inf. J 1995;29:997–1019.

    Google Scholar 

  4. Beal SL, Sheiner LB, eds. NONMEM Users Guides. Hanover, MD: GloboMax, LLC; 1989-1998.

    Google Scholar 

  5. Available at: http://www.uq.edu.au/pharmacy/sduffull/popt.htm. Accessed date: July 19, 2005.

  6. Retout S, Duffull S, Mentre' F. Development and implementation of the population Fisher information matrix for the evaluation of population pharmacokinetic designs.Comput Methods Programs Biomed. 2001;65:141–151.

    Article  PubMed  CAS  Google Scholar 

  7. Retout S, Mentre' F. Further developments of the Fisher information matrix in nonlinear mixed effects models with evaluation in population pharmacokinetics.J Biopharm Stat. 2003;13:209–227.

    Article  PubMed  Google Scholar 

  8. Retout S, Mentre' F. Optimisation of individual and population designs using Splus.J Pharmacokinet Pharmacodyn. 2003;30:417–453.

    Article  PubMed  Google Scholar 

  9. Green B, Duffull SB. Prospective evaluation of a D-optimal designed population pharmacokinetic study.J Pharmacokinet Pharmacodyn. 2003;30:145–161.

    Article  PubMed  CAS  Google Scholar 

  10. Harrel F. Regression Modeling Strategies with Applications to Linear Models, Logistic Regression, and Survival. New York: Springer, 2001;56–60.

    Google Scholar 

  11. Mandema JW, Verotta D, Sheiner LB. Building population pharmacokinetic-pharmacodynamic models. I. Models for covariate effects.J Pharmacokinet Biopharm. 1992;20:511–528.

    Article  PubMed  CAS  Google Scholar 

  12. Jonsson EN, Karlsson MO. Automated covariate model building with NONMEM.Pharm. Res. 1998;15:1463–1468.

    Article  PubMed  CAS  Google Scholar 

  13. Kowalski KG, Huntmacher MM. Efficient screening of covariates in population models using Wald's approximation to the likelihood ratio test.J Pharmacokinet Pharmacodyn. 2001;28:253–275.

    Article  PubMed  CAS  Google Scholar 

  14. Available at: http://www.cognigencorp.com/nonmem/nm/ 99sep 152004.html. Accessed date.

  15. Available at: http://www.cognigencorp.com/nonmen/nm/ 99nov212000.html.Accessed date.

  16. Cockroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine.Nephron. 1976;16:31–42.

    Article  Google Scholar 

  17. Girard P, Sheiner LB, Kastrissios H, Blaschke TF. Do we need full compliance data for population pharmacokinetic analysis?J Pharmacokinet Biopharm. 1996;24:265–282.

    Article  PubMed  CAS  Google Scholar 

  18. Vrijens B, Goetghebeur E. The impact of compliance in pharmacokinetic studies.Stat Methods Med Res. 1999;8:247–262.

    Article  PubMed  CAS  Google Scholar 

  19. Vrijens B, Goetghebeur E. Electronic monitoring of variation in drug intakes can reduce bias and improve precision in pharmacokinetic/pharmacodynamic population studies.Stat Med. 2004;23:531–544.

    Article  PubMed  Google Scholar 

  20. Lu J, Gries J-M, Verotta D, Sheiner LB. Selecting reliable pharmacokinetic data for explanatory analyses of clinical trials in the presence of noncompliance.J Pharmacokinet Pharmacodyn. 2001;28:343–362.

    Article  PubMed  CAS  Google Scholar 

  21. Mu S, Ludden TM. Estimation of population pharmacokinetic parameters in the presence of non-compliance.J Pharmacokinet Pharmacodyn.. 2003;30:53–81.

    Article  PubMed  Google Scholar 

  22. Karlsson MO, Sheiner LB. The importance of modeling interoccasion variability in population pharmacokinetic analyses.J Pharmacokinet Biopharm. 1993;21:735–750.

    Article  PubMed  CAS  Google Scholar 

  23. Wang W, Hsuan F, Chow S-C. The impact of patient compliance on drug concentration profile in multiple doses.Stat Med. 1996;15:659–669.

    Article  PubMed  CAS  Google Scholar 

  24. Kendall M, Stuart A. The Advanced Theory of Statistics, Volume 2, Inference and Relationship, Fourth Edition. New York: Macmillan, 1979:400–407.

    Google Scholar 

  25. Soy D, Beal SL, Sheiner LB. Population one-compartment pharmacokinetic analysis with missing dosage data.Clin Pharmacol Ther. 2004;76:441–451.

    Article  PubMed  CAS  Google Scholar 

  26. Sanathanan LP, Peck CC. The randomized concentration-controlled trial: an evaluation of its sample size efficiency.Control Clin Trials. 1991;12:780–794.

    Article  PubMed  CAS  Google Scholar 

  27. Hausman JA. Instrumental variable estimation. In: Kotz, S, Johnson NI, Read CB, eds.Encyclopedia of Statistical Sciences Volume 4. New York: Wiley, 1983;150–153.

    Google Scholar 

  28. Newhouse JP, McClellan M. Econometrics in outcomes research: the use of instrumental variables.Annu Rev Public Health. 1998;19:17–34.

    Article  PubMed  CAS  Google Scholar 

  29. Amemiya T. Two-stage least squares. In: Kotz S, Johnson NI, Read CB, eds.Encyclopedia of Statistical Sciences Volume 9. New York: Wiley, 1988;373–375.

    Google Scholar 

  30. SAS Institute Inc. SAS/ETS Users Guide. SAS Online Doc. Version 8. 1999.

  31. Pearl J. Causality. Cambridge, United Kingdom: Cambridge University Press, 2000.

    Google Scholar 

  32. Little RJ, Rubin DB. Causal effects in clinical and epidemiological studies via potential outcomes: concepts and analytical approaches.Annu Rev Public Health. 2000;21:121–145.

    Article  PubMed  CAS  Google Scholar 

  33. Greenland S, Robins JM, Pearl J. Confounding and collapsibility in causal inference.Stat Sci. 1999;14:29–46.

    Article  Google Scholar 

  34. Angrist JD, Imbens GW, Rubin DB. Identification of causal effects using instrumental variables (with discussion).J Am Stat Assn. 1996;434:444–472.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerry R. Nedelman PhD.

Additional information

Published: October 5, 2005

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nedelman, J.R. On some “disadvantages” of the population approach. AAPS J 7, 38 (2005). https://doi.org/10.1208/aapsj070238

Download citation

  • Received:

  • Accepted:

  • DOI: https://doi.org/10.1208/aapsj070238

Keywords

Navigation