Skip to main content
Log in

Fish drug analysis—Phish-pharm: A searchable database of pharmacokinetics data in fish

  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Information about drug residues and pharmacokinetic parameters in aquatic species is relatively sparse. In addition, it is difficult to rapidly compare data between studies due to differences in experimental conditions, such as water temperatures and salinity. To facilitate the study of aquatic species drug metabolism, we constructed a Fish Drug/Chemical Analysis Phish-Pharm (FDA-PP) database. This database consists of more than 400 articles that include data from 90 species (64 genera) of fish. Data fields include genus, species, water temperatures, the average animal weight, sample types analyzed, drug (or chemical) name, dosage, route of administration, metabolites identified, method of analysis, protein binding, clearance, volume of distribution in a central compartment (Vc) or volume of distribution at steady-state (Vd), and drug half-lives (t1/2). Additional fields list the citation, authors, title, and Internet links. The document will be periodically updated, and users are invited to submit additional data. Updates will be announced in future issues ofThe AAPS Journal. This database will be a valuable resource to investigators of drug metabolism in aquatic species as well as government and private organizations involved in the drug approval process for aquatic species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schnick RA, Gingerich WH, Griffin BR, Erdahl D. Progress of the Federal-State Aquaculture Drug Approval Partnership Project.American Fisheries Society Fish Health Newsletter. 2001;29:6–7, 9.

    Google Scholar 

  2. Haskell SR, Payne MA, Webb AI, Riviere JE, Craigmill AL. Current approved drugs for aquatic species.J Am Vet Med Assoc. 2004;224:50–51.

    Article  PubMed  Google Scholar 

  3. National Aquaculture Association. National Aquaculture Association Web site. Available at: http://www.nationalaquaculture.org. Accessed September 21, 2005.

  4. FDA/CVM.CVM and aquaculture. Food and Drug Administration Web site. Available at: http://www.fda.gov/cvm/aqualibtoc.htm. Accessed September 21, 2005.

  5. Friedlander LG, Brynes SD, Fernandez AH. The human food safety evaluation of new animal drugs.Vet Clin North Am Food Anim Pract. 1999;15:1–11, vii.

    PubMed  CAS  Google Scholar 

  6. The National Research Support Project No. 7. NRSP-7 minor use animal drug program. United States Dept of Agriculture, Cooperative State Research, Education and Extension Service. Available at: http://www. nrsp-7.org/. Accessed September 21, 2005.

  7. Schnick RA. Use of chemicals in fish management and fish culture: past and future. In: Smith DJ, Gingerich WH, Beconi-Barker MG, eds.Xenobiotics in Fish. New York, NY: Kluwer Academic/Plenum Publishers; 1999:1–14.

  8. Schnick RA. Aquaculture chemicals. In: Kirk-Othmer Encyclopedia of Chemical Technology-4th edition, Volume 3. New York, NY: John Wiley and Sons, Inc. 1992:608–623.

  9. American Veterinary Medical Association. Minor Use for Minor Species Animal Health Act. Available at: http://www.avma.org/scienact/mums/default.asp. Accessed September 21, 2005.

  10. FDA/CVM. Guidance 61-FDA Approval of New Animal Drugs for Minor Uses and for Minor Species. Food and Drug Administration Web site. Available at: http://www.fda.gov/cvm/guidance/minorgde.pdf. Accessed September 21, 2005.

  11. Gingerich WH, Stehly GR, Clark KJ, Hayton WL. Crop grouping: a proposal for public aquaculture.Vet Human Toxicol. 1998;40(suppl 2): 24–31.

    Google Scholar 

  12. MacMillan JR. Drug development for use by the aquaculture industry: the producers' perspective.Vet Hum Toxicol. 1998;40(suppl 2):7–9.

    PubMed  Google Scholar 

  13. Sundlof SF. Drug development for the aquaculture industry: a perspective from the Center for Veterinary Medicine.Vet Hum Toxicol. 1998;40 (suppl 2):5–7.

    PubMed  Google Scholar 

  14. Craigmill AL, Cortright KA. Interspecies considerations in the evaluation of human food safety for veterinary drugs.AAPS Pharm Sci. 2002;4(4):E34.

    Article  Google Scholar 

  15. JSA. United States Joint Subcommittee on Aquaculture Web site. Available at: http://ag.ansc.purdue.edu/aquanic/jsa/ Accessed September 21, 2005.

  16. Schnick R. National Coordinator for Aquaculture New Animal Drug Applications Web site. Available at: http://ag.ansc.purdue.edu/aquanic/jsa/aquadrugs/. Accessed September 21, 2005.

  17. Jones J, Kinnel M, Christenson R, Reimschuessel R. Gentamicin concentrations in toadfish and goldfish Serum.J Aquat Anim Health. 1997;9:211–215.

    Article  Google Scholar 

  18. Sohlberg S, Ingebrigtsen K, Hansen MK, Hayton WL, Horsberg TE. Flumequine in Atlantic salmonSalmo salar: disposition in fish held in sea water versus fresh water.Dis Aquat Organ. 2002;49:39–44.

    Article  CAS  Google Scholar 

  19. Barron MG, Tarr BD, Hayton WL. Temperature dependence of Di-2-ethylhexyl phthalate (DEHP) pharmacokinetics in rainbow trout.Toxicol Appl Pharmacol. 1987;88:305–312.

    Article  PubMed  CAS  Google Scholar 

  20. Bjorklund H, Bylund G. Temperature-related absorption and excretion of oxytetracycline in rainbow trout (Salmo gairdneri R.).Aquaculture. 1990;84:363–361.

    Article  Google Scholar 

  21. van Ginneken VJTh, Nouws JFM, Grondel JL, Driessens F, Degen M. Pharmacokinetics of sulphadimidine in carp (Cyprinus carpio L.) and rainbow trout (Salmo gairdneri Richardson) acclimated at two different temperature levels.Vet Q. 1991;13(2):88–96.

    PubMed  Google Scholar 

  22. Stehly GR, Meinertz JR, Gingerich WH. Effects of temperature on the elimination of benzocaine and acetylated benzocaine residues from the edible fillet of rainbow trout (Oncorhynchus mykiss).Food Addit Contam. 2000;17:387–392.

    Article  PubMed  CAS  Google Scholar 

  23. Draft Guidance CDER. Estimating a safe starting dose in clinical trials for therapeutics in human volunteers. Food and Drug Administration Web site. Available at: http://www.fda.gov/cber/gdlns/dose.pdf. Accessed September 21, 2005.

  24. Mahmood I. Interspecies scaling: is a priori knowledge of cytochrome p450 isoenzymes involved in drug metabolism helpful in prediction of clearance in humans from animal data?Drug Metabol Drug Interact. 2001;18:135–147.

    PubMed  CAS  Google Scholar 

  25. Mahmood I. Interspecies scaling of protein drugs: prediction of clearance from animals to humans.J Pharm Sci. 2004;93:177–185.

    Article  PubMed  CAS  Google Scholar 

  26. ASTDR. Agency for Toxic Substances and Disease Registry Web site. Available at: http://www.atsdr.cde.gov/.Accessed September 21, 2005.

  27. EPA—U.S. Environmental Protection Agency. Guidelines for Ecological Risk Assessment. Risk Assessment Forum, EPA/630/R095/002F, 1998. Available at: http://cfpub.epa.gov/ncea/cfm/recordisplay. cfm?deid-12460. Accessed September 21, 2005.

  28. Human Interindividual Variability in Parameters Related to Susceptibility for Toxic Effects [database online]. Clark University Database Web site. Available at: http://www.clarku.edu/faculty/dhattis/. Accessed September 21, 2005.

  29. Erhardt PW. A human drug metabolism database: potential roles in the quantitative predictions of drug metabolism and metabolism-related drug-drug interactions.Curr Drug Metab. 2003;4:411–422.

    Article  PubMed  CAS  Google Scholar 

  30. FARAD. Food Animal Residue Avoidance Databank Homepage. Available at: http://www.farad.org/. Accessed September 21, 2005.

  31. Keller F, Frankewitsch T, Zellner D, Simon S, Czock D, Giehl M. Standardized structure and modular design of a pharmacokinetic data-base.Comput Methods Programs Biomed 1998;55:107–115.

    Article  PubMed  CAS  Google Scholar 

  32. Yan Q, Sadee W. Human membrane transporter database: a Webaccessible relational database for drug transport studies and pharmacogenomics.AAPS Pharm Sci. 2000;2(3):E20.

    Article  CAS  Google Scholar 

  33. Van Eeckhout NJ, Van Peteghem CH, Helbo VC, Maghuin-Rogister GC, Cornelis MR. New database on hormone and veterinary drug residue determination in animal products.Analyst. 1998;123:2423–2427.

    Article  PubMed  Google Scholar 

  34. Riviere JE, Martin-Jimenez T, Sundlof SF, Craigmill AL. Interspecies allometric analysis of the comparative pharmacokinetics of 44 drugs across veterinary and laboratory animal species.J Vet Pharmacol Ther. 1997;20:453–463.

    Article  PubMed  CAS  Google Scholar 

  35. Haskell SR, Gehring R, Payne MA, et al. Update on FARAD food animal drug withholding recommendations.J Am Vet Med Assoc. 2003;223:1277–1278.

    Article  PubMed  Google Scholar 

  36. FDA/CVM. CVM Guidance For Industry. Guidance No. 3, General Principles for Evaluating the Safety of Compounds Used in Food-Producing Animals. Revised July 1994. Available at: http://www.fda.gov/cvm/guidance/guideline3toc.html. Accessed September 21, 2005.

  37. Setzer MD. Pharmacokinetics of gentamicin in channel catfish (Ictalurus punctatus).Am J Vet Res. 1985;46:2558–2561.

    Google Scholar 

  38. Stoskopf MK, Kennedy-Stoskopf S, Arnold J, Andrews J, Perlstein MT. Therapeutic aminoglycoside antibiotic levels in brown shark,Carcharhinus plumbeus (Nardo).J Fish Dis. 1986;9:303–311.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renate Reimschuessel.

Additional information

Published: September 22, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reimschuessel, R., Stewart, L., Squibb, E. et al. Fish drug analysis—Phish-pharm: A searchable database of pharmacokinetics data in fish. AAPS J 7, 30 (2005). https://doi.org/10.1208/aapsj070230

Download citation

  • Received:

  • Accepted:

  • DOI: https://doi.org/10.1208/aapsj070230

Keywords

Navigation