Advertisement

AAPS PharmSciTech

, 21:63 | Cite as

Bimatoprost Imprinted Silicone Contact Lens to Treat Glaucoma

  • Feng Yan
  • Yanxia Liu
  • Shulan Han
  • Qingsong Zhao
  • Nannan LiuEmail author
Research Article

Abstract

Bimatoprost is widely used for the management of glaucoma. Currently, it is delivered via eye drop solution, which is highly inefficient due to low bioavailability. To control the release of ocular drugs, contact lenses are used by scientists. However, the conventional soaking method showed high burst release due to absence of any efficient controlling membrane. The objective of the paper was to apply molecular imprinting technology to improve the loading of bimatoprost from the soaking solution and to sustain the release of drug from the contact lens. The bimatoprost was loaded by conventional soaking method (BT-SM) and compared with the molecular imprinted contact lenses (BT-MP). The loading of bimatoprost by molecular imprinting technology affect the swelling of the contact lens; however, the batch BT-MP-10 did not showed significant alterations. The uptake study showed improvement in the bimatoprost loading by molecular imprinting technology in comparison to the conventional soaking technology. The in vitro bimatoprost release data showed improvement in the bimatoprost release rate profiles with BT-MP contact lenses (up to 36–60 h) lenses in comparison to BT-SM contact lenses (up to 24–36 h). The in vivo rabbit tear fluid data with BT-MP batch showed improvement in the bimatoprost retention time in comparison to BT-SM contact lens and eye drop solution. The rabbit model failed to respond bimatoprost; thus, the efficacy studies need to be conducted on canines or human primates. The paper revealed the potential of using molecular imprinting technology to improve the uptake of bimatoprost and to achieve sustain release kinetics without altering the swelling, transmittance and folding endurance properties of the contact lens.

KEY WORDS

bimatoprost molecular imprinting soaking method silicone contact lenses animal studies 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12249_2020_1622_MOESM1_ESM.docx (193 kb)
ESM 1 (DOCX 192 kb)

References

  1. 1.
    Mainardes RM, Urban MC, Cinto PO, Khalil NM, Chaud MV, Evangelista RC, et al. Colloidal carriers for ophthalmic drug delivery. Curr Drug Targets. 2005;6(3):363–71.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Davies NM. Biopharmaceutical considerations in topical ocular drug delivery. Clin Exp Pharmacol Physiol. 2000;27(7):558–62.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Ahuja M, Dhake AS, Sharma SK, Majumdar DK. Topical ocular delivery of NSAIDs. AAPS J. 2008;10(2):229–35.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Agrahari V, Mandal A, Agrahari V, Trinh HM, Joseph M, Ray A, et al. A comprehensive insight on ocular pharmacokinetics. Drug Deliv Transl Res. 2016;6(6):735–54.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Rawas-Qalaji M, Williams C-A. Advances in ocular drug delivery. Curr Eye Res. 2012;37(5):345–56.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Gaudana R, Ananthula HK, Parenky A, Mitra AK. Ocular drug delivery. AAPS J. 2010;12(3):348–60.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Kumar A, Malviya R, Sharma PK. Recent trends in ocular drug delivery: a short review. Eur J Appl Sci. 2011;3(3):86–92.Google Scholar
  8. 8.
    Gaudana R, Jwala J, Boddu SH, Mitra AK. Recent perspectives in ocular drug delivery. Pharm Res. 2009;26(5):1197–205.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Ranch KM, Maulvi FA, Naik MJ, Koli AR, Parikh RK, Shah DO. Optimization of a novel in situ gel for sustained ocular drug delivery using Box-Behnken design: in vitro, ex vivo, in vivo and human studies. Int J Pharm. 2019;554:264–75.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Maulvi FA, Thakkar VT, Soni TG, Gandhi TR. Optimization of aceclofenac solid dispersion using Box-Behnken design: in-vitro and in-vivo evaluation. Curr Drug Deliv. 2014;11(3):380–91.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Maulvi FA, Patil RJ, Desai AR, Shukla MR, Vaidya RJ, Ranch KM, et al. Effect of gold nanoparticles on timolol uptake and its release kinetics from contact lenses: in vitro and in vivo evaluation. Acta Biomater. 2019;86:350–62.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Guzman-Aranguez A, Colligris B, Pintor J. Contact lenses: promising devices for ocular drug delivery. J Ocul Pharmacol Ther. 2013;29(2):189–99.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Xu J, Xue Y, Hu G, Lin T, Gou J, Yin T, et al. A comprehensive review on contact lens for ophthalmic drug delivery. J Control Release. 2018;281:97–118.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Tieppo A, White C, Paine A, Voyles M, McBride M, Byrne M. Sustained in vivo release from imprinted therapeutic contact lenses. J Control Release. 2012;157(3):391–7.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Karlgard C, Wong N, Jones L, Moresoli C. In vitro uptake and release studies of ocular pharmaceutical agents by silicon-containing and p-HEMA hydrogel contact lens materials. Int J Pharm. 2003;257(1–2):141–51.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Soluri A, Hui A, Jones L. Delivery of ketotifen fumarate by commercial contact lens materials. Optom Vis Sci. 2012;89(8):1140–9.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Zhang W, Zu D, Chen J, Peng J, Liu Y, Zhang H, et al. Bovine serum albumin–meloxicam nanoaggregates laden contact lenses for ophthalmic drug delivery in treatment of postcataract endophthalmitis. Int J Pharm. 2014;475(1–2):25–34.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Chandasana H, Prasad YD, Chhonker YS, Chaitanya TK, Mishra NN, Mitra K, et al. Corneal targeted nanoparticles for sustained natamycin delivery and their PK/PD indices: an approach to reduce dose and dosing frequency. Int J Pharm. 2014;477(1–2):317–25.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Kim H-J, Zhang K, Moore L, Ho D. Diamond nanogel-embedded contact lenses mediate lysozyme-dependent therapeutic release. ACS Nano. 2014;8(3):2998–3005.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Venkatesh S, Sizemore SP, Byrne ME. Biomimetic hydrogels for enhanced loading and extended release of ocular therapeutics. Biomaterials. 2007;28(4):717–24.PubMedCrossRefGoogle Scholar
  21. 21.
    Hiratani H, Mizutani Y, Alvarez-Lorenzo C. Controlling drug release from imprinted hydrogels by modifying the characteristics of the imprinted cavities. Macromol Biosci. 2005;5(8):728–33.PubMedCrossRefGoogle Scholar
  22. 22.
    White CJ, McBride MK, Pate KM, Tieppo A, Byrne ME. Extended release of high molecular weight hydroxypropyl methylcellulose from molecularly imprinted, extended wear silicone hydrogel contact lenses. Biomaterials. 2011;32(24):5698–705.PubMedCrossRefGoogle Scholar
  23. 23.
    Ciolino JB, Hudson SP, Mobbs AN, Hoare TR, Iwata NG, Fink GR, et al. A prototype antifungal contact lens. Invest Ophthalmol Vis Sci. 2011;52(9):6286–91.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Ciolino JB, Stefanescu CF, Ross AE, Salvador-Culla B, Cortez P, Ford EM, et al. In vivo performance of a drug-eluting contact lens to treat glaucoma for a month. Biomaterials. 2014;35(1):432–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Desai AR, Maulvi FA, Pandya MM, Ranch KM, Vyas BA, Shah SA, et al. Co-delivery of timolol and hyaluronic acid from semi-circular ring-implanted contact lenses for the treatment of glaucoma: in vitro and in vivo evaluation. Biomater Sci. 2018;6(6):1580–91.PubMedCrossRefGoogle Scholar
  26. 26.
    Maulvi FA, Singhania SS, Desai AR, Shukla MR, Tannk AS, Ranch KM, et al. Contact lenses with dual drug delivery for the treatment of bacterial conjunctivitis. Int J Pharm. 2018;548(1):139–50.PubMedCrossRefGoogle Scholar
  27. 27.
    Costa VP, Braga ME, Duarte CM, Alvarez-Lorenzo C, Concheiro A, Gil MH, et al. Anti-glaucoma drug-loaded contact lenses prepared using supercritical solvent impregnation. J Supercrit Fluids. 2010;53(1–3):165–73.CrossRefGoogle Scholar
  28. 28.
    Costa VP, Braga ME, Guerra JP, Duarte AR, Duarte CM, Leite EO, et al. Development of therapeutic contact lenses using a supercritical solvent impregnation method. J Supercrit Fluids. 2010;52(3):306–16.CrossRefGoogle Scholar
  29. 29.
    Duarte ARC, Simplicio AL, Vega-González A, Subra-Paternault P, Coimbra P, Gil M, et al. Supercritical fluid impregnation of a biocompatible polymer for ophthalmic drug delivery. J Supercrit Fluids. 2007;42(3):373–7.CrossRefGoogle Scholar
  30. 30.
    Li C-C, Abrahamson M, Kapoor Y, Chauhan A. Timolol transport from microemulsions trapped in HEMA gels. J Colloid Interface Sci. 2007;315(1):297–306.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Jones L, Powell CH. Uptake and release phenomena in contact lens care by silicone hydrogel lenses. Eye & Contact Lens. 2013;39(1):29–36.CrossRefGoogle Scholar
  32. 32.
    Li C-C, Chauhan A. Modeling ophthalmic drug delivery by soaked contact lenses. Ind Eng Chem Res. 2006;45(10):3718–34.CrossRefGoogle Scholar
  33. 33.
    Andrade Vivero P, Fernandez Gabriel E, Alvarez Lorenzo C, Concheiro A. Improving the loading and release of NSAIDs from pHEMA hydrogels by copolymerization with functionalized monomers. J Pharm Sci. 2007;96(4):802–13.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    White CJ, Byrne ME. Molecularly imprinted therapeutic contact lenses. Expert Opin Drug Deliv. 2010;7(6):765–80.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Alvarez Lorenzo C, Hiratani H, Gómez Amoza JL, Martínez Pacheco R, Souto C, Concheiro A. Soft contact lenses capable of sustained delivery of timolol. J Pharm Sci. 2002;91(10):2182–92.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Hiratani H, Mizutani Y, Alvarez Lorenzo C. Controlling drug release from imprinted hydrogels by modifying the characteristics of the imprinted cavities. Macromol Biosci. 2005;5(8):728–33.PubMedCrossRefGoogle Scholar
  37. 37.
    Alvarez-Lorenzo C, Yanez F, Barreiro-Iglesias R, Concheiro A. Imprinted soft contact lenses as norfloxacin delivery systems. J Control Release. 2006;113(3):236–44.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Tieppo A, Pate KM, Byrne ME. In vitro controlled release of an anti-inflammatory from daily disposable therapeutic contact lenses under physiological ocular tear flow. Eur J Pharm Biopharm. 2012;81(1):170–7.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Tang L, Zhao C-Y, Wang X-H, Li R-S, Yang J-R, Huang Y-P, et al. Macromolecular crowding of molecular imprinting: a facile pathway to produce drug delivery devices for zero-order sustained release. Int J Pharm. 2015;496(2):822–33.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Malakooti N, Alexander C, Alvarez-Lorenzo C. Imprinted contact lenses for sustained release of polymyxin B and related antimicrobial peptides. J Pharm Sci. 2015;104(10):3386–94.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Maulvi FA, Parmar RJ, Shukla MR, Desai AR, Desai DT, Ranch KM, et al. Plackett-Burman design for screening of critical variables and their effects on the optical transparency and swelling of gatifloxacin-Pluronic-loaded contact lens. Int J Pharm. 2019;566:513–9.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Alvarez-Lorenzo C, Hiratani H, Gomez-Amoza JL, Martínez-Pacheco R, Souto C, Concheiro A. Soft contact lenses capable of sustained delivery of timolol. J Pharm Sci. 2002;91(10):2182–92.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Hiratani H, Alvarez-Lorenzo C. The nature of backbone monomers determines the performance of imprinted soft contact lenses as timolol drug delivery systems. Biomaterials. 2004;25(6):1105–13.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Kim J, Chauhan A. Dexamethasone transport and ocular delivery from poly (hydroxyethyl methacrylate) gels. Int J Pharm. 2008;353(1–2):205–22.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Quesnel N-M, Simonet P. Spectral transmittance of UV-absorbing soft and rigid gas permeable contact lenses. Optometry vision science: official publication of the American Academy of Optometry. 1995;72(1):2–10.CrossRefGoogle Scholar
  46. 46.
    Laube T, Apel H, Koch H-R. Ultraviolet radiation absorption of intraocular lenses. Ophthalmology. 2004;111(5):880–5.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Quesnel N-M, Fares F, Verret E, Giasson C. Evaluation of the spectral transmittance of UV-absorbing disposable contact lenses. The CLAO journal: official publication of the Contact Lens Association of Ophthalmologists, Inc. 2001;27(1):23–9.Google Scholar
  48. 48.
    Frohn A, Dick HB, Augustin AJ, Grus FH. Late opacification of the foldable hydrophilic acrylic lens SC60B-OUV. Ophthalmology. 2001;108(11):1999–2004.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Boateng J, Popescu A. Composite bi-layered erodible films for potential ocular drug delivery. Colloids Surf B: Biointerfaces. 2016;145:353–61.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Rao PCM, Nappinnai M, Raju S, Rao UMV, Reddy VB. Fluconazole ocular inserts: formulation and in-vitro evaluation. J Pharm Sci Res. 2010;2(6):344–50.Google Scholar
  51. 51.
    Maxey KM, Johnson JL, LaBrecque J. The hydrolysis of bimatoprost in corneal tissue generates a potent prostanoid FP receptor agonist. Surv Ophthalmol. 2002;47:S34–40.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Kumar SS, Natraj K, Khan A, Kumar BK, Rao J. Development and validation of RP-HPLC method for estimation of bimatoprost in pharmaceutical dosage forms. J Pharm Res. 2011;4(10):3733–4.Google Scholar
  53. 53.
    Ciolino JB, Hoare TR, Iwata NG, Behlau I, Dohlman CH, Langer R, et al. A drug-eluting contact lens. Invest Ophthalmol Vis Sci. 2009;50(7):3346–52.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Lee SE, Kim SR, Park M. Oxygen permeability of soft contact lenses in different pH, osmolality and buffering solution. Int J Ophthalmol. 2015;8(5):1037–40.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Pozuelo J, Compañ V, González-Méijome JM, González M, Mollá S. Oxygen and ionic transport in hydrogel and silicone-hydrogel contact lens materials: an experimental and theoretical study. J Membr Sci. 2014;452:62–72.CrossRefGoogle Scholar
  56. 56.
    Peng C-C, Chauhan A. Ion transport in silicone hydrogel contact lenses. J Membr Sci. 2012;399:95–105.CrossRefGoogle Scholar
  57. 57.
    W.C. Hoffman, Light filtering contact lens, Google Patents, 1997.Google Scholar
  58. 58.
    Nichols P, Mortensen N, Tingy D, Vasquez A, Bates J. Pharmacokinetics of molecular imprinted hydrogels as drug delivery vehicles. Biochem Pharmacol. 2018;7(238):2167–0501.1000238.Google Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2020

Authors and Affiliations

  • Feng Yan
    • 1
  • Yanxia Liu
    • 2
  • Shulan Han
    • 3
  • Qingsong Zhao
    • 4
  • Nannan Liu
    • 5
    Email author
  1. 1.Department of OphthalmologyNingcheng Central HospitalChifengChina
  2. 2.Department of OphthalmologyJiuquan People’s HospitalJiuquanChina
  3. 3.Department of PharmacyZhucheng Maternal and Child Health Care HospitalZhuchengChina
  4. 4.Department of NeurologyNingcheng Central HospitalChifengChina
  5. 5.Department of OphthalmologyXuzhou Municipal Central HospitalXuzhouChina

Personalised recommendations