Skip to main content
Log in

Orodispersible Carbamazepine/Hydroxypropyl-β-Cyclodextrin Tablets Obtained by Direct Compression with Five-in-One Co-processed Excipients

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The development of orodispersible tablets (ODTs) for poorly soluble and poorly flowable drugs via direct compression is still a challenge. This work aimed to develop ODTs of poorly soluble drugs by combining cyclodextrins that form inclusion complexes to improve wetting and release properties, and directly compressible co-processed excipients able to promote rapid disintegration and solve the poor flowability typical of inclusion complexes. Carbamazepine (CBZ) and hydroxypropyl-β-cyclodextrin (HPβCD) were used, respectively, as a model of a poorly soluble drug with poor flowability and as a solubilizing agent. Specifically, CBZ—an antiepileptic and anticonvulsant drug—may benefit from the studied formulation approach, since some patients have swallowing difficulties or fear of choking and are non-cooperative. Prosolv® ODT G2 and F-Melt® type C were the studied five-in-one co-processed excipients. The complex was prepared by kneading. Flow properties of all materials and main properties of the tablets were characterized. The obtained results showed that ODTs containing CBZ/HPβCD complex can be prepared by direct compression through the addition of co-processed excipients. The simultaneous use of co-processing and cyclodextrin technologies rendered ODTs with an in vitro disintegration time in accordance with the European Pharmacopoeia requirement and with a fast and complete drug dissolution. In conclusion, the combination of five-in-one co-processed excipients and hydrophilic cyclodextrins may help addressing the ODT formulation of poorly soluble drugs with poor flowability, by direct compression and with desired release properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Conceição J, Adeoye O, Cabral-Marques HM, Lobo JMS. Cyclodextrins as drug carriers in pharmaceutical technology: the state of the art. Curr Pharm Des. 2018;24(13):1405–33.

    PubMed  Google Scholar 

  2. Narvekar M, Xue HY, Eoh JY, Wong HL. Nanocarrier for poorly water-soluble anticancer drugs—barriers of translation and solutions. AAPS PharmSciTech. 2014;15(4):822–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Jansook P, Ogawa N, Loftsson T. Cyclodextrins: structure, physicochemical properties and pharmaceutical applications. Int J Pharm. 2018;535(1–2):272–84.

    CAS  PubMed  Google Scholar 

  4. Salústio PJ, Pontes P, Conduto C, Sanches I, Carvalho C, Arrais J, et al. Advanced technologies for oral controlled release: cyclodextrins for oral controlled release. AAPS PharmSciTech. 2011;12(4):1276–92.

    PubMed  PubMed Central  Google Scholar 

  5. Jacob S, Nair AB. Cyclodextrin complexes: perspective from drug delivery and formulation. Drug Dev Res. 2018;79(5):201–17.

    CAS  PubMed  Google Scholar 

  6. Conceição J, Adeoye O, Cabral-Marques HM, Lobo JMS. Cyclodextrins as excipients in tablet formulations. Drug Discov Today. 2018;23(6):1274–84.

    PubMed  Google Scholar 

  7. Adeoye O, Cabral-Marques H. Cyclodextrin nanosystems in oral drug delivery: a mini review. Int J Pharm. 2017;531(2):521–31.

    CAS  PubMed  Google Scholar 

  8. Loftsson T, Saokham P, Sá Couto AR. Self-association of cyclodextrins and cyclodextrin complexes in aqueous solutions. Int J Pharm. 2019;560:228–34.

    CAS  PubMed  Google Scholar 

  9. Conceição J, Farto-Vaamonde X, Goyanes A, Adeoye O, Concheiro A, Cabral-Marques H, et al. Hydroxypropyl-β-cyclodextrin-based fast dissolving carbamazepine printlets prepared by semisolid extrusion 3D printing. Carbohydr Polym. 2019;221:55–62.

    PubMed  Google Scholar 

  10. European Pharmacopoeia, 9th edition. Strasbourg, France: European Directorate for the Quality of Medicines & HealthCare (EDQM), Council of Europe; 2016.

  11. Cilurzo F, Musazzi UM, Franzé S, Selmin F, Minghetti P. Orodispersible dosage forms: biopharmaceutical improvements and regulatory requirements. Drug Discov Today. 2018;23(2):251–9.

    CAS  PubMed  Google Scholar 

  12. Visser JC, Woerdenbag HJ, Hanff LM, Frijlink HW. Personalized medicine in pediatrics: the clinical potential of orodispersible films. AAPS PharmSciTech. 2017;18(2):267–72.

    CAS  PubMed  Google Scholar 

  13. Slavkova M, Breitkreutz J. Orodispersible drug formulations for children and elderly. Eur J Pharm Sci. 2015;75:2–9.

    CAS  PubMed  Google Scholar 

  14. Petrovick GF, Kleinebudde P, Breitkreutz J. Orodispersible tablets containing taste-masked solid lipid pellets with metformin hydrochloride: influence of process parameters on tablet properties. Eur J Pharm Biopharm. 2018;122:137–45.

    CAS  PubMed  Google Scholar 

  15. Zeng F, Wang L, Zhang W, Shi K, Zong L. Formulation and in vivo evaluation of orally disintegrating tablets of clozapine/hydroxypropyl-β-cyclodextrin inclusion complexes. AAPS PharmSciTech. 2013;14(2):854–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Mangal S, Meiser F, Morton D, Larson I. Particle engineering of excipients for direct compression: understanding the role of material properties. Curr Pharm Des. 2015;21(40):5877–89.

    CAS  PubMed  Google Scholar 

  17. Bowles BJ, Dziemidowicz K, Lopez FL, Orlu M, Tuleu C, Edwards AJ, et al. Co-processed excipients for dispersible tablets—part 1: manufacturability. AAPS PharmSciTech. 2018;19(6):2598–609.

    CAS  PubMed  Google Scholar 

  18. Patel S, Kaushal AM, Bansal AK. Compression physics in the formulation development of tablets. Crit Rev Ther Drug Carrier Syst. 2006;23(1):1–65.

    CAS  PubMed  Google Scholar 

  19. Dziemidowicz K, Lopez FL, Bowles BJ, Edwards AJ, Ernest TB, Orlu M, et al. Co-processed excipients for dispersible tablets—part 2: patient acceptability. AAPS PharmSciTech. 2018;19(6):2646–57.

    CAS  PubMed  Google Scholar 

  20. Krupa A, Jachowicz R, Pędzich Z, Wodnicka K. The influence of the API properties on the ODTs manufacturing from co-processed excipient systems. AAPS PharmSciTech. 2012;13(4):1120–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Siow CRS, Tang DS, Heng PWS, Chan LW. Probing the impact of HPMC viscosity grade and proportion on the physical properties of co-freeze-dried mannitol-HPMC tableting excipients using multivariate analysis methods. Int J Pharm. 2019;556:246–62.

    CAS  PubMed  Google Scholar 

  22. Assaf SM, Subhi Khanfar M, Bassam Farhan A, Said Rashid I, Badwan AA. Preparation and characterization of co-processed starch/MCC/chitin hydrophilic polymers onto magnesium silicate. Pharm Dev Technol. 2019;24(6):761–74.

    CAS  PubMed  Google Scholar 

  23. Rathod P, Mori D, Parmar R, Soniwala M, Chavda J. Co-processing of cefuroxime axetil by spray drying technique for improving compressibility and flow property. Drug Dev Ind Pharm. 2019;45(5):767–74.

    CAS  PubMed  Google Scholar 

  24. Saha S, Shahiwala AF. Multifunctional coprocessed excipients for improved tabletting performance. Expert Opin Drug Deliv. 2009;6(2):197–208.

    CAS  PubMed  Google Scholar 

  25. Rojas J, Buckner I, Kumar V. Co-proccessed excipients with enhanced direct compression functionality for improved tableting performance. Drug Dev Ind Pharm. 2012;38(10):1159–70.

    CAS  PubMed  Google Scholar 

  26. Mirani AG, Patankar SP, Borole VS, Pawar AS, Kadam VJ. Direct compression high functionality excipient using coprocessing technique: a brief review. Curr Drug Deliv. 2011;8(4):426–35.

    CAS  PubMed  Google Scholar 

  27. Al-Khattawi A, Mohammed AR. Challenges and emerging solutions in the development of compressed orally disintegrating tablets. Expert Opin Drug Discovery. 2014;9(10):1109–20.

    CAS  Google Scholar 

  28. Al-Khattawi A, Mohammed AR. Compressed orally disintegrating tablets: excipients evolution and formulation strategies. Expert Opin Drug Deliv. 2013;10(5):651–63.

    CAS  PubMed  Google Scholar 

  29. Gierbolini J, Giarratano M, Benbadis SR. Carbamazepine-related antiepileptic drugs for the treatment of epilepsy—a comparative review. Expert Opin Pharmacother. 2016;17(7):885–8.

    PubMed  Google Scholar 

  30. Higuchi T, Connors KA. Phase solubility techniques. Adv Anal Chem Instrum. 1965;4:117–212.

    CAS  Google Scholar 

  31. United States Pharmacopeia (USP) 41 - National Formulary (NF) 36. Rockville, United States of America: The United States Pharmacopeial Convention; 2017.

  32. Loftsson T, Brewster ME. Cyclodextrins as functional excipients: methods to enhance complexation efficiency. J Pharm Sci. 2012;101(9):3019–32.

    CAS  PubMed  Google Scholar 

  33. Kleptose®: betacyclodextrins and hydroxypropyl betacyclodextrins: Roquette; 2006.

  34. Conceição J, Adeoye O, Cabral-Marques HM, Sousa Lobo JM. Hydroxypropyl-β-cyclodextrin and β-cyclodextrin as tablet fillers for direct compression. AAPS PharmSciTech. 2018;19(6):2710–8.

    PubMed  Google Scholar 

  35. Conceição J, Teixeira C, Sousa G, Simões AM, Amorim A, Sá B, et al. Tablet machine instrumentation: influence of lubricants on the lubrication efficiency and compaction profiles. Arh Farm. 2016;66:111–2.

    Google Scholar 

  36. Conceição J, Sousa G, Teixeira C, Simões AM, Sá B, Sousa Lobo JM. Influence of lubricants on tabletting and drug release characteristics. In: 10th world meeting on pharmaceutics, biopharmaceutics and pharmaceutical technology; Glasgow: APV, APGI and A.D.R.I.T.E.L.F; 2016.

  37. Moqbel HA, ElMeshad AN, El-Nabarawi MA. A pharmaceutical study on chlorzoxazone orodispersible tablets: formulation, in-vitro and in-vivo evaluation. Drug Deliv. 2016;23(8):2998–3007.

    PubMed  Google Scholar 

  38. Kohlmann P, Stillhart C, Kuentz M, Parrott N. Investigating oral absorption of carbamazepine in pediatric populations. AAPS J. 2017;19(6):1864–77.

    CAS  PubMed  Google Scholar 

  39. Chandrasekaran P, Kandasamy R. Development of extended-release oral flexible tablet (ER-OFT) formulation for pediatric and geriatric compliance: an age-appropriate formulation. AAPS PharmSciTech. 2017;18(7):2394–409.

    CAS  PubMed  Google Scholar 

  40. European Medicines Agency (EMA), Committee for Human Medicinal Products (CHMP). Background review for cyclodextrins used as excipients. London; 2014. https://www.ema.europa.eu/en/documents/report/background-review-cyclodextrins-used-excipients-context-revision-guideline-excipients-label-package_en.pdf.

  41. Kou W, Cai C, Xu S, Wang H, Liu J, Yang D, et al. In vitro and in vivo evaluation of novel immediate release carbamazepine tablets: complexation with hydroxypropyl-β-cyclodextrin in the presence of HPMC. Int J Pharm. 2011;409(1–2):75–80.

    CAS  PubMed  Google Scholar 

  42. Koester LS, Xavier CR, Mayorga P, Bassani VL. Influence of beta-cyclodextrin complexation on carbamazepine release from hydroxypropyl methylcellulose matrix tablets. Eur J Pharm Biopharm. 2003;55(1):85–91.

    CAS  PubMed  Google Scholar 

  43. Loh GOK, Tan YTF, Peh K-K. Enhancement of norfloxacin solubility via inclusion complexation with β-cyclodextrin and its derivative hydroxypropyl-β-cyclodextrin. Asian J Pharm Sci. 2016;11(4):536–46.

    Google Scholar 

  44. Mura P. Analytical techniques for characterization of cyclodextrin complexes in the solid state: a review. J Pharm Biomed Anal. 2015;113:226–38.

    CAS  PubMed  Google Scholar 

  45. Jain AS, Date AA, Pissurlenkar RR, Coutinho EC, Nagarsenker MS. Sulfobutyl ether(7) β-cyclodextrin (SBE(7) β-CD) carbamazepine complex: preparation, characterization, molecular modeling, and evaluation of in vivo anti-epileptic activity. AAPS PharmSciTech. 2011;12(4):1163–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Katzhendler I, Azoury R, Friedman M. Crystalline properties of carbamazepine in sustained release hydrophilic matrix tablets based on hydroxypropyl methylcellulose. J Control Release. 1998;54(1):69–85.

    CAS  PubMed  Google Scholar 

  47. Medarević D, Kachrimanis K, Djurić Z, Ibrić S. Influence of hydrophilic polymers on the complexation of carbamazepine with hydroxypropyl-β-cyclodextrin. Eur J Pharm Sci. 2015;78:273–85.

    PubMed  Google Scholar 

  48. Salústio PJ, Cabral-Marques HM, Costa PC, Pinto JF. Comparison of ibuprofen release from minitablets and capsules containing ibuprofen: β-cyclodextrin complex. Eur J Pharm Biopharm. 2011;78(1):58–66.

    PubMed  Google Scholar 

  49. Salústio PJ, Pinto JF, Costa PC, Cabral-Marques HM. Release profiles of indometacin in β-cyclodextrin complexes from HPMC capsules. J Incl Phenom Macrocycl Chem. 2013;75:101–9.

    Google Scholar 

  50. Conceição J, Sá B, Vaz Q, Mesquita P, Sousa G, Sousa Lobo JM. Effect of superdisintegrants on dissolution rate and disintegration time. Arh Farm. 2016;66:109–10.

    Google Scholar 

  51. Guidance for industry: orally disintegrating tablets: Food and Drug Administration (FDA); 2008.

  52. Rao NGR, Patel T, Gandhi S. Development and evaluation of carbamazepine fast dissolving tablets prepared with a complex by direct compression technique. Asian J Pharm. 2009;3(2):97–103.

    Google Scholar 

  53. Arima H, Higashi T, Motoyama K. Improvement of the bitter taste of drugs by complexation with cyclodextrins: applications, evaluations and mechanisms. Ther Deliv. 2012;3(5):633–44.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the JRS Pharma and Fuji Chemical Industries for supplying free samples of the excipients. We are also thankful to Materials Centre of the University of Porto (CEMUP) for the expert assistance with SEM analysis.

Funding

Jaime Conceição is grateful to Fundação para a Ciência e a Tecnologia (FCT, Portugal) and PhD Programme in Medicines and Pharmaceutical Innovation (i3DU) for funding this work through the grant [PD/BD/127813/2016]. This work was also supported by the Applied Molecular Biosciences Unit-UCIBIO which is financed by national funds from FCT/MCTES (UID/Multi/04378/2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime Conceição.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Conceição, J., Adeoye, O., Cabral-Marques, H. et al. Orodispersible Carbamazepine/Hydroxypropyl-β-Cyclodextrin Tablets Obtained by Direct Compression with Five-in-One Co-processed Excipients. AAPS PharmSciTech 21, 39 (2020). https://doi.org/10.1208/s12249-019-1579-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-019-1579-5

KEY WORDS

Navigation