AAPS PharmSciTech

, 21:1 | Cite as

Formulation of Direct Compression Zidovudine Tablets to Correlate the SeDeM Diagram Expert System and the Rotary Press Simulator Styl’ONE Results

  • Isaac NofreriasEmail author
  • Anna Nardi
  • Marc Suñé-Pou
  • Josep M. Suñé-Negre
  • Encarna García-Montoya
  • Pilar Pérez-Lozano
  • Montserrat Miñarro
  • Bernard Bataille
  • Josep R. Ticó
Research Article


The SeDeM diagram expert system has been applied to study Zidovudine and some excipients. From the obtained diagrams, a pharmaceutical formula has been designed. SeDeM diagram ascertains the critical parameters that are suitable for a direct compression. The formula is compressed using a rotary tablet press simulator which emulates rotary tablet press’ compression profiles. From these compressions, we study the formula behavior under different industrial production conditions but saving a huge amount of material. The study is done at different compression forces and compression speeds and taking into account the influence of the pre-compression force. The differences observed between the compression profiles are hereby described. The results indicate that the formulation is able to be compressed adequately with the emulated compression profiles and no differences are observed between the final products. Therefore, we can assure that the SeDeM diagram expert system is accurate and robust. Moreover, its results are comparable with the compression results in a rotary tablet press, which has never been described in the pharmaceutical literature before. From the obtained results, it is possible to select the best rotary press to scale-up this formulation.


direct compression SeDeM rotary press simulator zidovudine tablet formulation 


Supplementary material

12249_2019_1542_MOESM1_ESM.docx (19 kb)
ESM 1 (DOCX 19 kb)


  1. 1.
    Suñé-Negre JM, Roig M, Fuster R, Hernández C, Ruhí R, García-Montoya E, et al. Nueva metodología de preformulación galénica para la caracterización de sustancias en relación a su viabilidad para la compresión: Diagrama SeDeM. Cienc tecnol Pharm. 2005;3:125–36.Google Scholar
  2. 2.
    Suñé-Negre JM, García-Montoya E, Pérez-Lozano P, Aguilar-díaz JE, Roig-Carreras M, Fuster-García R, et al. SeDeM diagram: a new expert system for the formulation of drugs in solid form. In: Petrica V, editor. Expert systems for human, materials and automation. InTech. Rijeka, Croatia: Editorial InTech; 2011. p. 17–34.Google Scholar
  3. 3.
    Suñé-Negre JM, Pérez-Lozano P, Roig M, Fuster R, Hernández C, Ruhí R, et al. Optimization of parameters of the SeDeM diagram expert system: Hausner index (IH) and relative humidity (%RH). Eur J Pharm Biopharm. 2011;79(2):464–72.CrossRefGoogle Scholar
  4. 4.
    Suñé-Negre JM, Roig Carreras M, Fuster García R, García-Montoya E, Pérez-Lozano P, Aguilar Díaz JE, et al. SeDeM Diagram: an expert system for preformulation , characterization and optimization of tablets obtained by direct compression. In: Aguilar-Díaz JE, editor. Formulation tools for pharmaceutical development. Aguilar Dí. Cambridge (UK): Woodhead Publishing Limited; 2013. p. 109–35.CrossRefGoogle Scholar
  5. 5.
    Aguilar-Díaz JE, García-Montoya E, Pérez-Lozano P, Suñe-Negre JM, Miñarro M, Ticó JR. The use of the SeDeM diagram expert system to determine the suitability of diluents–disintegrants for direct compression and their use in formulation of ODT. Eur J Pharm Biopharm. 2009;73(3):414–23.CrossRefGoogle Scholar
  6. 6.
    Pérez P, Suñé-Negre JM, Miñarro M, Roig M, Fuster R, García-Montoya E, et al. A new expert systems (SeDeM diagram) for control batch powder formulation and preformulation drug products. Eur J Pharm Biopharm. 2006;64(3):351–9.CrossRefGoogle Scholar
  7. 7.
    Saurí J, Millán D, Suñé-Negre JM, Pérez-Lozano P, Sarrate R, Fàbregas A, et al. The use of the SeDeM diagram expert system for the formulation of captopril SR matrix tablets by direct compression. Int J Pharm. 2014;461:38–45.CrossRefGoogle Scholar
  8. 8.
    World Health Organization. Antiretroviral therapy of HIV infection in infants and children in resource-limited settings: towards universal access. Recommendations for a public health approach [Internet]. 2006. p. 171. Available from: Acces date: 20/05/2017
  9. 9.
    Legorreta A, Yu A, Chernicoff H, Gilmore A, Jordan J, Rosenzweig JC. Adherence to combined Lamivudine+Zidovudine versus individual components: A community-based retrospective medicaid claims analysis. AIDS Care [Internet]. 2005 18 [cited 2018 Apr 20];17(8):938–48. Available from: Scholar
  10. 10.
    Suñé-Negre JM, Pérez-Lozano P, Miñarro M, Roig M, Fuster R, Hernández C, et al. Application of the SeDeM diagram and a new mathematical equation in the design of direct compression tablet formulation. Eur J Pharm Biopharm [Internet]. 2008;69(3):1029–39 Available from: Scholar
  11. 11.
    Nofrerias I, Nardi A, Suñé-Pou M, Boeckmans J, Suñé-Negre JM, García-Montoya E, et al. Optimization of the cohesion index in the SeDeM diagram expert system and application of SeDeM Diagram: an improved methodology to determine the Cohesion Index. Goodall R, editor. PLoS One [Internet]. 2018 13 [cited 2018 Nov 8];13(9):e0203846. Available from:
  12. 12.
    Nofrerias I, Nardi A, Suñé-Pou M, Suñé-Negre JM, García-Montoya E, Pérez-Lozano P, et al. Comparison between microcrystalline celluloses of different grades made by four manufacturers using the SeDeM diagram expert system as a pharmaceutical characterization tool. Powder Technol [Internet]. 2019 [cited 2018 Nov 8];342:780–8. Available from: CrossRefGoogle Scholar
  13. 13.
    Mazel V, Busignies V, Diarra H, Tchoreloff P. Measurements of elastic moduli of pharmaceutical compacts: a new methodology using double compaction on a compaction simulator. J Pharm Sci [Internet]. 2012 [cited 2018 Jun 28];101(6):2220–8. Available from: CrossRefGoogle Scholar
  14. 14.
    Michaut F, Busignies V, Rouquereau BH, Leclerc B, Tchoreloff P. Evaluation of a rotary tablet press simulator as a tool for the characterization of compaction properties of pharmaceutical products. J Pharm Sci. 2009;99:2874–85.CrossRefGoogle Scholar
  15. 15.
    Tarlier N, Soulairol I, Bataille B, Baylac G, Ravel P, Nofrerias I, et al. Compaction behavior and deformation mechanism of directly compressible textured mannitol in a rotary tablet press simulator. Int J Pharm [Internet]. 2015 [cited 2018];495:410–9. Available from:
  16. 16.
    Pishnamazi M, Casilagan S, Clancy C, Shirazian S, Iqbal J, Egan D, et al. Microcrystalline cellulose, lactose and lignin blends: process mapping of dry granulation via roll compaction. 2018 [cited 2018 Sep 4]; Available from: Scholar
  17. 17.
    van Veen B, Bolhuis GK, Wu YS, Zuurman K, Frijlink HW. Compaction mechanism and tablet strength of unlubricated and lubricated (silicified) microcrystalline cellulose. Eur J Pharm Biopharm. 2005;59(1):133–8.CrossRefGoogle Scholar
  18. 18.
    Thoorens G, Krier F, Leclercq B, Carlin B, Evrard B. Microcrystalline cellulose, a direct compression binder in a quality by design environment - a review. Int J Pharm [Internet]. 2014;473(1–2):64–72. Available from:. Scholar
  19. 19.
    Mazel V, Busignies V, Diarra H, Tchoreloff P. Lamination of pharmaceutical tablets due to air entrapment: direct visualization and influence of the compact thickness. Int J Pharm [Internet]. 2015;478(2):702–4 Available from: Scholar
  20. 20.
    Sarkar S, Ooi SM, Liew CV, Wan P, Heng S. Influence of rate of force application during compression on tablet capping. J Pharm Sci [Internet]. 2015 [cited 2018 Apr 18];104:1319–27. Available from:
  21. 21.
    Bundenthal M. Increasing dwell time without decreasing output [Internet]. 2011 [cited 2018 Jan 7]. Available from:
  22. 22.
    Anbalagan P, Sarkar S, Liew C V, Heng PWS. Influence of the punch head design on the physical quality of tablets produced in a rotary press. Pharm Drug Deliv Pharm Technol [Internet]. 2017 [cited 2018 Apr 18]; Available from:
  23. 23.
    Akande OF, Ford JL, Rowe PH, Rubinstein MH. The effects of lag-time and dwell-time on the compaction properties of 1:1 paracetamol/microcrystalline cellulose tablets prepared by pre-compression and main compression. J Pharm Pharmacol. 1998;50(1):19–28.CrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2019

Authors and Affiliations

  • Isaac Nofrerias
    • 1
    Email author
  • Anna Nardi
    • 1
  • Marc Suñé-Pou
    • 1
    • 2
  • Josep M. Suñé-Negre
    • 1
    • 3
  • Encarna García-Montoya
    • 1
    • 3
  • Pilar Pérez-Lozano
    • 1
    • 3
  • Montserrat Miñarro
    • 1
    • 3
  • Bernard Bataille
    • 4
  • Josep R. Ticó
    • 1
    • 3
  1. 1.Pharmacy and Pharmaceutical Technology, and Physical Chemistry Department, Faculty of Pharmacy and Food SciencesUniversity of BarcelonaBarcelonaSpain
  2. 2.Department of Molecular BiologyInstitute of Parasitology and Biomedicine “López Neyra” (IPBLN-CSIC), PTSGranadaSpain
  3. 3.Pharmacotherapy, Pharmacogenetics and Pharmaceutical Technology Research Group, IDIBELL-UBDuran i Reynals HospitalBarcelonaSpain
  4. 4.Institut Charles Gerhardt UMR5253 Equipe MACSUFR Science Pharmaceutique-Université MontpellierMontpellierFrance

Personalised recommendations