Advertisement

AAPS PharmSciTech

, 20:283 | Cite as

Redispersible Spray-Dried Powder Containing Nanoencapsulated Curcumin: the Drying Process Does Not Affect Neuroprotection In vitro

  • Diego Fontana de Andrade
  • Branko Vukosavljevic
  • Juliana Bender Hoppe
  • Adriana Raffin Pohlmann
  • Sílvia Stanisçuaski Guterres
  • Maike Windbergs
  • Irene Külkamp-Guerreiro
  • Christianne Gazzana Salbego
  • Ruy Carlos Ruver BeckEmail author
Research Article

Abstract

A redispersible spray-dried formulation containing curcumin-loaded, lipid-core nanocapsules (LNC-C) was developed for oral administration. The neuroprotective activity of curcumin after the spray-drying process was evaluated in vitro. The spray-dried powder (SD-LNC-C) was produced using a drying adjuvant composed of a blend of maltodextrin and l-leucine (90:10 w/w). Acceptable process yield (~ 70%) and drug content (6.5 ± 0.2 mg g−1) were obtained. SD-LNC-C was formed by smooth, spherical-shaped particles, and confocal Raman analysis indicated the distribution of the LNC-C on the surface of the leucine/maltodextrin agglomerates. The surface of the agglomerates was formed by a combination of LNC-C and adjuvants, and laser diffraction showed that SD-LNC-C had adequate aqueous redispersion, with no loss of controlled drug release behaviour of LNC-C. The in vitro curcumin activity against the lipopolysaccharide (LPS)-induced proinflammatory response in organotypic hippocampal slice cultures was evaluated. Both formulations (LNC-C and SD-LNC-C) reduced TNF-α to similar levels. Therefore, neuroprotection of curcumin in vitro may be improved by nanoencapsulation followed by spray-drying, with no loss of this superior performance. Hence, the redispersible spray-dried powder proposed here represents a suitable approach for the development of innovative nanomedicines containing curcumin for the prevention/treatment of neurodegenerative diseases.

KEY WORDS

curcumin nanocapsules neuroinflammation powders spray-drying 

Notes

Acknowledgements

The authors gratefully receive the financial support of CAPES/Probral, CAPES (Finance Code 001), CNPq, FAPERGS, INCT_IF and the German Academic Exchange Service (DAAD). A PhD Fellowship was provided by CAPES-Brazil to D. F. de Andrade.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12249_2019_1501_MOESM1_ESM.pdf (200 kb)
ESM 1 (PDF 199 kb)

References

  1. 1.
    Gupta SC, Patchva S, Aggarwal BB. Therapeutic roles of curcumin: lessons learned from clinical trials. AAPS J. 2013;15(1):195–218.  https://doi.org/10.1208/s12248-012-9432-8.CrossRefPubMedGoogle Scholar
  2. 2.
    Belkacemi A, Doggui S, Dao L, Ramassamy C. Challenges associated with curcumin therapy in Alzheimer disease. Expert Rev Mol Med. 2011;13:e34.  https://doi.org/10.1017/S1462399411002055.CrossRefPubMedGoogle Scholar
  3. 3.
    Shishodia S, Sethi G, Aggarwal BB. Curcumin: getting back to the roots. Ann N Y Acad Sci. 2005;1056:206–17.  https://doi.org/10.1196/annals.1352.010.CrossRefPubMedGoogle Scholar
  4. 4.
    Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: problems and promises. Mol Pharm. 2007;4(6):807–18.  https://doi.org/10.1021/mp700113r.CrossRefPubMedGoogle Scholar
  5. 5.
    Zanotto-Filho A, Coradini K, Braganhol E, Schroder R, de Oliveira CM, Simoes-Pires A, et al. Curcumin-loaded lipid-core nanocapsules as a strategy to improve pharmacological efficacy of curcumin in glioma treatment. Eur J Pharm Biopharm. 2013;83(2):156–67.  https://doi.org/10.1016/j.ejpb.2012.10.019.CrossRefPubMedGoogle Scholar
  6. 6.
    Hoppe JB, Coradini K, Frozza RL, Oliveira CM, Meneghetti AB, Bernardi A, et al. Free and nanoencapsulated curcumin suppress beta-amyloid-induced cognitive impairments in rats: involvement of BDNF and Akt/GSK-3beta signaling pathway. Neurobiol Learn Mem. 2013;106:134–44.  https://doi.org/10.1016/j.nlm.2013.08.001.CrossRefPubMedGoogle Scholar
  7. 7.
    Jaques JA, Doleski PH, Castilhos LG, da Rosa MM, Souza V do C, Carvalho FB, et al. Free and nanoencapsulated curcumin prevents cigarette smoke-induced cognitive impairment and redox imbalance. Neurobiol Learn Mem. 2013;100:98–107.  https://doi.org/10.1016/j.nlm.2012.12.007.CrossRefPubMedGoogle Scholar
  8. 8.
    Venturini CG, Jager E, Oliveira CP, Bernardi A, Battastini AM, Guterres SR, et al. Formulation of lipid-core nanocapsules. Colloids Surf A Physicochem Eng Asp. 2011;375(1–3):200–8.  https://doi.org/10.1016/j.colsurfa.2010.12.011.CrossRefGoogle Scholar
  9. 9.
    Fiel LA, Rebêlo LM, Santiago TM, Adorne MD, Guterres SS, Sousa JS, et al. Diverse deformation properties of polymeric nanocapsules and lipid-core nanocapsules. Soft Matter. 2011;7(16):7240–7.  https://doi.org/10.1039/C1SM05508A.CrossRefGoogle Scholar
  10. 10.
    Ourique AF, Melero A, de Bona da Silva C, Schaefer UF, Pohlmann AR, Guterres SS, et al. Improved photostability and reduced skin permeation of tretinoin: development of a semisolid nanomedicine. Eur J Pharm Biopharm. 2011;79(1):95–101.  https://doi.org/10.1016/j.ejpb.2011.03.008. CrossRefPubMedGoogle Scholar
  11. 11.
    Frozza RL, Bernardi A, Paese K, Hoppe JB, da Silva T, Battastini AM, et al. Characterization of trans-resveratrol-loaded lipid-core nanocapsules and tissue distribution studies in rats. J Biomed Nanotechnol. 2010;6(6):694–703.  https://doi.org/10.1166/jbn.2010.1161.CrossRefPubMedGoogle Scholar
  12. 12.
    de Andrade DF, Fontana MC, Pohlmann AR, Guterres SS, Carlos R, Beck R. Nanoencapsulation of clobetasol propionate decreases its penetration to skin layers without changing its relative skin distribution. J Nanosci Nanotechnol. 2015;15(1):875–9.  https://doi.org/10.1166/jnn.2015.9183.CrossRefPubMedGoogle Scholar
  13. 13.
    Rodrigues SF, Fiel LA, Shimada AL, PN R, Guterres SS, Pohlmann AR, et al. Lipid-core nanocapsules act as a drug shuttle through the blood brain barrier and reduce glioblastoma after intravenous or oral administration. J Biomed Nanotechnol. 2016;12(5):986–1000.  https://doi.org/10.1166/jbn.2016.2215.CrossRefPubMedGoogle Scholar
  14. 14.
    Morishita M, Peppas NA. Is the oral route possible for peptide and protein drug delivery? Drug Discov Today. 2006;11:905–10.  https://doi.org/10.1016/j.drudis.2006.08.005.CrossRefPubMedGoogle Scholar
  15. 15.
    Schaffazick SR, Guterres SS, Pohlmann AR, Lucca FL. Caracterização e estabilidade físico-química de sistemas poliméricos nanoparticulados para administração de fármacos. Quim Nova. 2003;26(5):726–37.  https://doi.org/10.1590/S0100-40422003000500017.CrossRefGoogle Scholar
  16. 16.
    Hoffmeister CR, Durli TL, Schaffazick SR, Raffin RP, Bender EA, Beck RC, et al. Hydrogels containing redispersible spray-dried melatonin-loaded nanocapsules: a formulation for transdermal-controlled delivery. Nanoscale Res Lett. 2012;7(1):1–13.  https://doi.org/10.1186/1556-276X-7-251.CrossRefGoogle Scholar
  17. 17.
    Marchiori MC, Ourique AF, da Silva Cde B, Raffin RP, Pohlmann AR, Guterres SS, et al. Spray-dried powders containing tretinoin-loaded engineered lipid-core nanocapsules: development and photostability study. J Nanosci Nanotechnol. 2012;12(3):2059–67.  https://doi.org/10.1166/jnn.2012.5192.CrossRefPubMedGoogle Scholar
  18. 18.
    Ourique AF, Chaves Pdos S, Souto GD, Pohlmann AR, Guterres SS, Beck RC. Redispersible liposomal-N-acetylcysteine powder for pulmonary administration: development, in vitro characterization and antioxidant activity. Eur J Pharm Sci. 2014;65:174–82.  https://doi.org/10.1016/j.ejps.2014.09.017.CrossRefPubMedGoogle Scholar
  19. 19.
    Andrade DF, Vukosavljevic B, Benvenutti EV, Pohlmann AR, Guterres SS, Windbergs M, et al. Redispersible spray-dried lipid-core nanocapsules intended for oral delivery: the influence of the particle number on redispersibility. Pharm Dev Technol. 2018;23:414–25.  https://doi.org/10.1080/10837450.2017.1400559.CrossRefPubMedGoogle Scholar
  20. 20.
    Mendyk A, Jachowicz R, Fijorek K, Dorozynski P, Kulinowaki P, Polak S. KinetDS: an open source software for dissolution test data analysis. Dissolut Technol. 2012;19(1):6–11.  https://doi.org/10.14227/DT190112P6.CrossRefGoogle Scholar
  21. 21.
    Aggarwal BB, Harikumar KB. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell Biol. 2009;41(1):40–59.  https://doi.org/10.1016/j.biocel.2008.06.010.CrossRefPubMedGoogle Scholar
  22. 22.
    Stoppini L, Buchs PA, Muller D. A simple method for organotypic cultures of nervous tissue. J Neurosci Methods. 1991;37(2):173–82.  https://doi.org/10.1016/0165-0270(91)90128-M.CrossRefPubMedGoogle Scholar
  23. 23.
    Frozza RL, Horn AP, Hoppe JB, Simao F, Gerhardt D, Comiran RA, et al. A comparative study of beta-amyloid peptides Abeta1-42 and Abeta25-35 toxicity in organotypic hippocampal slice cultures. Neurochem Res. 2009;34(2):295–303.  https://doi.org/10.1007/s11064-008-9776-8.CrossRefPubMedGoogle Scholar
  24. 24.
    Hoppe JB, Frozza RL, Horn AP, Comiran RA, Bernardi A, Campos MM, et al. Amyloid-beta neurotoxicity in organotypic culture is attenuated by melatonin: involvement of GSK-3beta, tau and neuroinflammation. J Pineal Res. 2010;48(3):230–8.  https://doi.org/10.1111/j.1600-079X.2010.00747.x.CrossRefPubMedGoogle Scholar
  25. 25.
    Friedrich RB, Fontana MC, Bastos MO, Pohlmann AR, Guterres SS, Beck RC. Drying polymeric drug-loaded nanocapsules: the wet granulation process as a promising approach. J Nanosci Nanotechnol. 2010;10(1):616–21.  https://doi.org/10.1166/jnn.2010.1732.CrossRefPubMedGoogle Scholar
  26. 26.
    Abdewahed W, Degobert D, Stainmesse S, Fessi H. Freeze-drying of nanoparticles: formulation, process and storage considerations. Adv Drug Deliv Rev. 2006;38(58):1688–713.  https://doi.org/10.1016/j.addr.2006.09.017.CrossRefGoogle Scholar
  27. 27.
    Liu W, Chen XD, Cheng Z, Selomulya C. On enhancing the solubility of curcumin by microencapsulation in whey protein isolate via spray drying. J Food Eng. 2016;169:189–95.  https://doi.org/10.1016/j.jfoodeng.2015.08.034.CrossRefGoogle Scholar
  28. 28.
    Machado APF, Rezende CA, Rodrigues RA, Barbero GF, Rosa PTV, Martínez J. Encapsulation of anthocyanin-rich extract from blackberry residues by spray-drying, freeze-drying and supercritical antisolvent. Powder Technol. 2018;340:554–62.  https://doi.org/10.1016/j.powtec.2018.09.063.CrossRefGoogle Scholar
  29. 29.
    Hlinak AJ, Kuriyan K, Morris KR, Reklaitis GV. K. BP. Understanding critical material properties for solid dosage form design. J Pharm Innov. 2006;1:12–7.  https://doi.org/10.1007/BF02784876. CrossRefGoogle Scholar
  30. 30.
    Hou H, Sun C. Quantifying effects of particulate properties on powder flow properties using a ring shear tester. J Pharm Sci. 2008;97(9):4030–9.  https://doi.org/10.1002/jps.21288.CrossRefPubMedGoogle Scholar
  31. 31.
    Fu X, Huck D, Makein L, Armstrong B, Willen U, Freeman T. Effect of particle shape and size on flow properties of lactose powders. Particuology. 2012;10:203–8.  https://doi.org/10.1016/j.partic.2011.11.003.CrossRefGoogle Scholar
  32. 32.
    Kho K, Cheow WS, Lie RH, Hadinoto K. Aqueous re-dispersibility of spray-dried antibiotic-loaded polycaprolactone nanoparticle aggregates for inhaled anti-biofilm therapy. Powder Technol. 2010;203(3):432–9.  https://doi.org/10.1016/j.powtec.2010.06.003.CrossRefGoogle Scholar
  33. 33.
    Dimer FA, Ortiz M, Pase CS, Roversi K, Friedrich RB, Pohlmann AR, et al. Nanoencapsulation of olanzapine increases its efficacy in antipsychotic treatment and reduces adverse effects. J Biomed Nanotechnol. 2014;10(6):1137–45.  https://doi.org/10.1166/jbn.2014.1817.CrossRefPubMedGoogle Scholar
  34. 34.
    Coradini K, Friedrich RB, Fonseca FN, Vencato MS, Andrade DF, Oliveira CM, et al. A novel approach to arthritis treatment based on resveratrol and curcumin co-encapsulated in lipid-core nanocapsules: in vivo studies. Eur J Pharm Sci. 2015;78:163–70.  https://doi.org/10.1016/j.ejps.2015.07.012.CrossRefPubMedGoogle Scholar
  35. 35.
    Frozza RL, Bernardi A, Hoppe JB, Meneghetti AB, Matte A, Battastini AM, et al. Neuroprotective effects of resveratrol against Abeta administration in rats are improved by lipid-core nanocapsules. Mol Neurobiol. 2013;47(3):1066–80.  https://doi.org/10.1007/s12035-013-8401-2.CrossRefPubMedGoogle Scholar
  36. 36.
    Fontana MC, Rezer JF, Coradini K, Leal DB, Beck RC. Improved efficacy in the treatment of contact dermatitis in rats by a dermatological nanomedicine containing clobetasol propionate. Eur J Pharm Biopharm. 2011;79(2):241–9.  https://doi.org/10.1016/j.ejpb.2011.05.002.CrossRefPubMedGoogle Scholar
  37. 37.
    Pohlmann AR, Fonseca FN, Paese K, Detoni CB, Coradini K, Beck RC, et al. Poly(-caprolactone) microcapsules and nanocapsules in drug delivery. Expert Opin Drug Deliv. 2013;10(5):623–38.  https://doi.org/10.1517/17425247.2013.769956.CrossRefPubMedGoogle Scholar
  38. 38.
    Zhao YN, Gu J, Jia S, Guan Y, Zhang Y. Zero-order release of polyphenolic drugs from dynamic, hydrogen-bonded LBL films. Soft Matter. 2016;12(4):1085–92.  https://doi.org/10.1039/c5sm02186c.CrossRefPubMedGoogle Scholar
  39. 39.
    Mody N, Tekade RK, Mehra NK, Chopdey P, Jain NK. Dendrimer, liposomes, carbon nanotubes and PLGA nanoparticles: one platform assessment of drug delivery potential. AAPS PharmSciTech. 2014;15(2):388–99.  https://doi.org/10.1208/s12249-014-0073-3.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Singhvi G, Singh M. Review: In vitro drug release characterization model. Int J Pharm Stud Res. 2011;2(1):77–84.Google Scholar
  41. 41.
    Gokhale A. Achieving zero-order release kinetics using multi-step diffusion based drug delivery. Pharm Technol. 2014;38(5):1–3.Google Scholar
  42. 42.
    Wang L, Chen K, Wen H, Ouyang D, Li X, Gao Y, et al. Design and evaluation of hydrophilic matrix system containing polyethylene oxides for the zero-order controlled delivery of water-insoluble drugs. AAPS PharmSciTech. 2017;18(1):82–92.  https://doi.org/10.1208/s12249-016-0498-y.CrossRefPubMedGoogle Scholar
  43. 43.
    Oliveira CP, Venturini CG, Donida B, Poletto FS, Guterres SR, Pohlmann AR. An algorithm to determine the mechanism of drug distribution in lipid-core nanocapsule formulations. Soft Matter. 2012;9(4):1141–50.  https://doi.org/10.1039/C2SM26959G. CrossRefGoogle Scholar
  44. 44.
    Khan KA. The concept of dissolution efficiency. J Pharm Pharmacol. 1975;27(1):48–9.  https://doi.org/10.1111/j.2042-7158.1975.tb09378.x.CrossRefPubMedGoogle Scholar
  45. 45.
    Anderson NH, Bauer M, Boussac N, Khan-Malek R, Munden P, Sardaro M. An evaluation of fit factors and dissolution efficiency for the comparison of in vitro dissolution profiles. J Pharm Biomed Anal. 1998;17(4–5):811–22.  https://doi.org/10.1016/S0731-7085(98)00011-9.CrossRefPubMedGoogle Scholar
  46. 46.
    Tuppo EE, Arias HR. The role of inflammation in Alzheimer’s disease. Int J Biochem Cell Biol. 2005;37(2):289–305.  https://doi.org/10.1016/j.biocel.2004.07.009.CrossRefPubMedGoogle Scholar
  47. 47.
    Frotscher M, Zafirov S, Heimrich B. Development of identified neuronal types and of specific synaptic connections in slice cultures of rat hippocampus. Prog Neurobiol. 1995;45(6):vii–xxviii.  https://doi.org/10.1016/0301-0082(95)90872-H.CrossRefPubMedGoogle Scholar
  48. 48.
    Frozza RL, Bernardi A, Hoppe JB, Meneghetti AB, Battastini AM, Pohlmann AR, et al. Lipid-core nanocapsules improve the effects of resveratrol against Abeta-induced neuroinflammation. J Biomed Nanotechnol. 2013;9(12):2086–104.  https://doi.org/10.1166/jbn.2013.1709.CrossRefPubMedGoogle Scholar
  49. 49.
    Johansson S, Bohman S, Radesater AC, Oberg C, Luthman J. Salmonella lipopolysaccharide (LPS) mediated neurodegeneration in hippocampal slice cultures. Neurotox Res. 2005;8(3–4):207–20.  https://doi.org/10.1007/BF03033974.CrossRefPubMedGoogle Scholar
  50. 50.
    Higashi Y, Aratake T, Shimizu S, Shimizu T, Nakamura K, Tsuda M, et al. Influence of extracellular zinc on M1 microglial activation. Sci Rep. 2017;7:1–13.  https://doi.org/10.1038/srep43778.CrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2019

Authors and Affiliations

  • Diego Fontana de Andrade
    • 1
  • Branko Vukosavljevic
    • 2
  • Juliana Bender Hoppe
    • 3
  • Adriana Raffin Pohlmann
    • 1
    • 4
  • Sílvia Stanisçuaski Guterres
    • 1
  • Maike Windbergs
    • 2
    • 5
  • Irene Külkamp-Guerreiro
    • 1
  • Christianne Gazzana Salbego
    • 3
  • Ruy Carlos Ruver Beck
    • 1
    • 6
    Email author
  1. 1.Programa de Pós-Graduação em Ciências FarmacêuticasUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  2. 2.Department of Drug DeliveryHelmholtz Centre for Infection Research (HZI) and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrueckenGermany
  3. 3.Departamento de BioquímicaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  4. 4.Instituto de QuímicaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  5. 5.Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life SciencesGoethe UniversityFrankfurt am MainGermany
  6. 6.Departamento de Produção e Controle de MedicamentosUniversidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations