Skip to main content

Advertisement

Log in

Didodecyldimethylammonium Bromide Role in Anchoring Gold Nanoparticles onto Liposome Surface for Triggering the Drug Release

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Liposomes with their capacity to anchor gold nanoparticles (AuNPs) onto their surface are used in the treatment of several pathologies such as cancer. The objective of this work was the optimization of the vesicle composition by using cationic agents in order to reinforce the anchoring process of AuNPs, and for the study of the influence of local temperature and vesicle size on drug release. A Plackett–Burman design was conducted to determine the optimal composition for the anchoring of AuNPs. A comprehensive study of the influence of lipid bilayer composition on the surface charge, size, and polydispersity index (PdI) of liposomes was carried out. Afterwards, in vitro release studies by dialysis were performed and several release parameters were evaluated as a function of temperature. Cholesterol was fixed as the rigid agent and Didodecyldimethylammonium bromide (DDAB) was selected as the cationic lipid into the liposome bilayer. Photomicrographs revealed that DDAB facilitated the anchoring of AuNPs onto the liposomal surface. The anchoring of AuNPs also enhanced the amount and rate of calcein released, especially in extruded samples, at several incubating temperatures. In addition, it was observed that both the anchoring of AuNPs and the calcein release were improved by increasing the surface of the vesicles. The contributions of liposome composition (DDAB inclusion, incubation temperature, anchoring of AuNPs) and size and surface availability of the vesicles on calcein release could be used to design improved lipid nanostructures for the controlled release of anticancer drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ramasamy T, Ruttala HB, Gupta B, Poudel BK, Choi HG, Yong CS, et al. Smart chemistry-based nanosized drug delivery systems for systemic applications: a comprehensive review. J Control Release. 2017;258:226–53.

    CAS  PubMed  Google Scholar 

  2. Wicki A, Witzigmann D, Balasubramanian V, Huwyler J. Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J Control Release. 2015;200:138–57.

    CAS  PubMed  Google Scholar 

  3. Torchilin V. Tumor delivery of macromolecular drugs based on the EPR. Adv Drug Deliv Rev. 2011;63(3):131–5.

    CAS  PubMed  Google Scholar 

  4. Nakamura Y, Mochida A, Choyke PL, Kobayashi H. Nanodrug delivery: is the enhanced permeability and retention effect sufficient for curing cancer? Bioconjug Chem. 2016;27(10):2225–38.

    CAS  PubMed  Google Scholar 

  5. Deshpande PP, Biswas S, Torchilin VP. Current trends in the use of liposomes for tumor targeting. Nanomedicine. 2013;8(9):1509–28.

    CAS  PubMed  Google Scholar 

  6. Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev. 2013;65:36–48.

    CAS  PubMed  Google Scholar 

  7. Kneidl B, Peller M, Winter G, Lindner LH, Hossann M. Thermosensitive liposomal drug delivery systems: state of the art review. Int J Nanomedicine. 2014;9:4387–439.

    PubMed  PubMed Central  Google Scholar 

  8. Rana S, Bajaj A, Mout R, Rotello VM. Monolayer coated gold nanoparticles for delivery applications. Adv Drug Deliv Rev. 2012;64:200–16.

    CAS  PubMed  Google Scholar 

  9. Pissuwan D, Niidome T, Cortie MB. The forthcoming applications of gold nanoparticles in drug and gene delivery systems. J Control Release. 2011;149:65–71.

    CAS  PubMed  Google Scholar 

  10. Kumar A, Zhang X, Liang XJ. Gold nanoparticles: emerging paradigm for targeted drug delivery system. Biotechnol Adv. 2013;31:593–606.

    CAS  PubMed  Google Scholar 

  11. Dreaden EC, Mackey MA, Huang X, Kang B, El-Sayed MA. Beating cancer in multiple ways using nanogold. Chem Soc Rev. 2011;40:3391–404.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Schroeder A, Heller DA, Winslow MM, Dahlman JE, Pratt GW, Langer R. Treating metastatic cancer with nanotechnology. Nat Rev Cancer. 2012;12:39–50.

    CAS  Google Scholar 

  13. Daniel MC, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev. 2004;104(1):293–346.

    CAS  PubMed  Google Scholar 

  14. Alkilany AM, Murphy CJ. Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J Nanopart Res. 2010;12:2313–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu Y, He M, Niu M, Zhao Y, Zhu Y, Li Z, et al. Delivery of vincristine sulfate-conjugated gold nanoparticles using liposomes: a light-responsive nanocarrier with enhanced antitumor efficiency. Int J Nanomedicine. 2015;10:3081–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Yu M, Guo F, Tan F, Li N. Dual-targeting nanocarrier system based on thermosensitive liposomes and gold nanorods for cancer thermo-chemotherapy. J Control Release. 2015;215:91–100.

    CAS  PubMed  Google Scholar 

  17. Sau TK, Urban AS, Dondapati SK, Fedoruk M, Horton MR, Rogach AL, et al. Controlling loading and optical properties of gold nanoparticles on liposome membranes. Colloids Surf A Physicochem Eng Asp. 2009;342:92–6.

    CAS  Google Scholar 

  18. Lajunen T, Viitala L, Kontturi LS, Laaksonen T, Vuorimaa-Laukkanen E, Viitala T, et al. Light induced cytosolic drug delivery from liposomes with gold nanoparticles. J Control Release. 2015;203:85–98.

    CAS  PubMed  Google Scholar 

  19. Pitsillides CM, Joe EK, Wei XB, Anderson RR, Lin CP. Selective cell targeting with light-absorbing microparticles and nanoparticles. Biophys J. 2003;84(6):4023–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Divya KP, Dharuman V. Supported binary liposome vesicle-gold nanoparticle for enhanced label free DNA and protein sensing. Biosens Bioelectron. 2017;95:168–73.

    PubMed  Google Scholar 

  21. Rossi G, Monticelli L. Gold nanoparticles in model biological membranes: a computational perspective. Biochim Biophys Acta. 1858;2016:2380–9.

    Google Scholar 

  22. Paasonen L, Laaksonen T, Johans C, Yliperttula M, Kontturi K, Urtti A. Gold nanoparticles enable selective light-induced contents release from liposomes. J Control Release. 2007;122:86–93.

    CAS  PubMed  Google Scholar 

  23. Manojlovic V, Winkler K, Bunjes V, Neub A, Schubert R, Bugarski B, et al. Membrane interactions of ternary phospholipid/cholesterol bilayers and encapsulation efficiencies of a RIP II protein. Colloids Surf B: Biointerfaces. 2008;64:284–96.

    CAS  PubMed  Google Scholar 

  24. Villasmil-Sánchez S, Rabasco AM, González-Rodríguez ML. Thermal and31P-NMR studies to elucidate sumatriptan succinate entrapment behavior in phosphatidylcholine/cholesterol liposomes. Comparative 31P-NMR analysis on negatively and positively-charged liposomes. Colloids Surf B: Biointerfaces. 2013;105:14–23.

    PubMed  Google Scholar 

  25. Li P, Zhang L, Ai K, Li D, Liu X, Wang E. Coating didodecyldimethylammonium bromide onto Au nanoparticles increases the stability of its complex with DNA. J Control Release. 2008;129:128–34.

    CAS  PubMed  Google Scholar 

  26. Kanwar R, Kaur G, Mehta SK. Revealing the potential of didodecyldimethyl ammonium bromide as efficient scaffold for fabrication of nano liquid crystalline structures. Chem Phys Lipids. 2016;196:61–8.

    CAS  PubMed  Google Scholar 

  27. Proverbio ZE, Schulz PC, Puig JE. Aggregation of the aqueous dodecyltrimethylammonium bromide-didodecyldimethylammonium bromide system at low concentration. Colloid Polym Sci. 2002;280(11):1045–52.

    CAS  Google Scholar 

  28. Ludzik K, Kacperska A, Kustrzepa K, Dychto R. Interactions between sodium dodecylsulphate and didodecyldimethylammonium bromides vesicles in aqueous solutions. J Mol Liq. 2017;20:273–9.

    Google Scholar 

  29. Schaeublin NM, Braydich-Stolle LK, Schrand AM, Miller JM, Hutchison J, Schlager JJ, et al. Surface charge of gold nanoparticles mediates mechanism of toxicity. Nanoscale. 2011;3(2):410–20.

    CAS  PubMed  Google Scholar 

  30. Balazs DA, Godbey WT. Liposomes for use in gene delivery. J Drug Deliv. 2011;2011:1–12. https://doi.org/10.1155/2011/326497.

    Article  CAS  Google Scholar 

  31. Chongsiriwatana NP, Barron AE. Comparing bacterial membrane interactions of antimicrobial peptides and their mimics. Methods Mol Biol. 2010;618:171–82.

    CAS  PubMed  Google Scholar 

  32. Maestrelli F, González-Rodríguez ML, Rabasco AM, Mura P. Preparation and characterisation of liposomes encapsulating ketoprofen-cyclodextrin complexes for transdermal drug delivery. Int J Pharm. 2005;298:55–67.

    CAS  PubMed  Google Scholar 

  33. López-Pinto JM, González-Rodríguez ML, Rabasco AM. Effect of cholesterol and ethanol on dermal delivery from DPPC liposomes. Int J Pharm. 2005;298:1–12.

    PubMed  Google Scholar 

  34. Maestrelli F, González-Rodríguez ML, Rabasco AM, Mura P. Effect of preparation technique on the properties of liposomes encapsulating ketoprofen-cyclodextrin complexes aimed for transdermal delivery. Int J Pharm. 2006;312(1–2):53–60.

    CAS  PubMed  Google Scholar 

  35. Berger N, Sachse A, Bender J, Schubert R, Brandl M. Filter extrusion of liposomes using different devices: comparison of liposome size, encapsulation efficiency, and process characteristics. Int J Pharm. 2001;223:55–68.

    CAS  PubMed  Google Scholar 

  36. González-Rodríguez ML, Mouram I, Cózar-Bernal MJ, Villasmil S, Rabasco AM. Applying the Taguchi method to optimize sumatriptan succinate niosomes as drug carriers for skin delivery. J Pharm Sci. 2012;101(10):3845–63.

    PubMed  Google Scholar 

  37. Imandi SB, Karanam SK, Garapati HR. Use of Plackett-Burman design for rapid screening of nitrogen and carbon sources for the production of lipase in solid state fermentation by Yarrowia lipolytica from mustard oil cake (Brassica napus). Braz J Microbiol. 2013;44(3):915–21.

    CAS  PubMed  Google Scholar 

  38. Maherani B, Arab-Tehrany E, Kheirolomoom A, Linder M. Calcein release behavior from liposomal bilayer; influence of physicochemical/mechanical/structural properties of lipids. Biochimie. 2013;95:2018–33.

    CAS  PubMed  Google Scholar 

  39. Yannis LL. A Plackett–Burman screening design directs the efficient formulation of multicomponent DRV liposomes. J Pharm Biomed Anal. 2001;26:255–63.

    Google Scholar 

  40. García-Esteban E, Cózar-Bernal MJ, Rabasco AM, González-Rodríguez ML. A comparative study of stabilizing effect and antioxidant activity of different antioxidants on levodopa-loaded liposomes. J Microencapsul. 2018;35(4):357–71.

    PubMed  Google Scholar 

  41. Fernández-Romero AM, Maestrelli F, Rabasco AM, Mura P, González-Rodríguez ML. Novel findings about double-loaded curcumin-in HP-β-cyclodextrin-in liposomes: effects on the lipid bilayer and drug release. Pharmaceutics. 2018;10(4):E256. https://doi.org/10.3390/pharmaceutics10040256.

    Article  PubMed  Google Scholar 

  42. Kojima C, Hirano Y, Yuba E, Harada A, Kono K. Preparation and characterization of complexes of liposomes with gold nanoparticles. Colloids Surf B: Biointerfaces. 2008;66(2):246–52.

    CAS  PubMed  Google Scholar 

  43. Patil YP, Jadhav S. Novel methods for liposome preparation. Chem Phys Lipids. 2014;177:8–18.

    CAS  PubMed  Google Scholar 

  44. Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013;8(1):102–11.

    PubMed  PubMed Central  Google Scholar 

  45. Riaz M. Liposome preparation method. Pak J Pharm Sci. 1996;9(1):65–77.

    CAS  PubMed  Google Scholar 

  46. Kan P, Tsao CW, Wang AJ, Su WC, Liang HF. A liposomal formulation able to incorporate a high content of paclitaxel and exert promising anticancer effect. J Drug Deliv. 2011:629234. https://doi.org/10.1155/2011/629234.

    Google Scholar 

  47. Traïkia M, Warschawski DE, Recouvreur M, Cartaud J, Devaux PF. Formation of unilamellar vesicles by repetitive freeze-thaw cycles: characterization by electron microscopy and 31P-nuclear magnetic resonance. Eur Biophys J. 2000;29:184–95.

    PubMed  Google Scholar 

  48. Koide H, Okamoto A, Tsuchida H, Ando H, Ariizumi S, Kiyokawa C, et al. One-step encapsulation of siRNA between lipid-layers of multi-layer polycation liposomes by lipoplex freeze-thawing. J Control Release. 2016;228:1–8.

    CAS  PubMed  Google Scholar 

  49. Ming Ong SG, Chitneni M, Lee KS, Ming LC, Yuen KH. Evaluation of extrusion technique for nanosizing liposomes. Pharmaceutics. 2016;8(4). https://doi.org/10.3390/pharmaceutics8040036.

    PubMed Central  Google Scholar 

  50. Ding WX, Qi XR, Li P, Maitani Y, Nagai T. Cholesteryl hemisuccinate as a membrane stabilizer in dipalmitoylphosphatidylcholine liposomes containing saikosaponin-D. Int J Pharm. 2005;300(1–2):38–47.

    CAS  PubMed  Google Scholar 

  51. Villasmil-Sánchez S, Drhimeur W, Ospino SC, Rabasco AM, González-Rodríguez ML. Positively and negatively charged liposomes as carriers for transdermal delivery of sumatriptan: in vitro characterization. Drug Dev Ind Pharm. 2010;36(6):666–75.

    PubMed  Google Scholar 

  52. Prieto F, Rueda M, Naitlho N, Vázquez-González M, González-Rodríguez ML, Rabasco AM. Electrochemical characterization of a mixed lipid monolayer supported on Au(111) electrodes with implications for doxorubicin delivery. J Electroanal Chem. 2018;815:246–54.

    CAS  Google Scholar 

  53. Mady MM, Fathy MM, Youssef T, Khalil WM. Biophysical characterization of gold nanoparticles-loaded liposomes. Phys Med. 2012;28:288–95.

    PubMed  Google Scholar 

  54. Angelini G, Chiarini M, De Maria P, Fontana A, Gasbarri C, Siani G, et al. Characterization of cationic liposomes. Influence of the bilayer composition on the kinetics of the liposome breakdown. Chem Phys Lipids. 2011;164(7):680–7.

    CAS  PubMed  Google Scholar 

  55. Park SH, Oh SG, Mun JY, Han SS. Loading of gold nanoparticles inside the DPPC bilayers of liposome and their effects on membrane fluidities. Colloids Surf B: Biointerfaces. 2006;48(2):112–8.

    CAS  PubMed  Google Scholar 

  56. Mathiyazhakan M, Yang Y, Liu Y, Zhu C, Liu Q, Ohl CD, et al. Non-invasive controlled release from gold nanoparticle integrated photo-responsive liposomes through pulse laser induced microbubble cavitation. Colloids Surf B: Biointerfaces. 2015;126:569–74.

    CAS  PubMed  Google Scholar 

  57. Farahmandghavi F, Imani M, Hajiesmaeelian F. Silicone matrices loaded with levonorgestrel particles: impact of the particle size on drug release. J Drug Deliv Sci Technol. 2019;49:132–42.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Ministry of Economy (CTQ2014-57515-C2-1-R, 2014) for financial support and the CITIUS Microscopy Service of the Universidad de Sevilla, and we are especially grateful to Mss. Asunción Fernández Estefane for her technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Luisa González-Rodríguez.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naitlho, N., Prieto-Dapena, F., Rabasco, A.M. et al. Didodecyldimethylammonium Bromide Role in Anchoring Gold Nanoparticles onto Liposome Surface for Triggering the Drug Release. AAPS PharmSciTech 20, 294 (2019). https://doi.org/10.1208/s12249-019-1492-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-019-1492-y

KEY WORDS

Navigation