AAPS PharmSciTech

, 20:288 | Cite as

Development and Evaluation of Optimized Thiolated Chitosan Proniosomal Gel Containing Duloxetine for Intranasal Delivery

  • Maryam khatoon
  • Muhammad Farhan Sohail
  • Gul Shahnaz
  • Fiza ur Rehman
  • Fakhar-ud-Din
  • Asim ur Rehman
  • Naseem Ullah
  • Umair Amin
  • Gul Majid Khan
  • Kifayat Ullah ShahEmail author
Research Article


Proniosomes offer excellent potential for improved drug delivery, through versatile routes, by overcoming the permeation barriers faced by several drugs. The study was aimed to develop a thiomer gel containing duloxetine proniosomes for the intranasal delivery, improving its bioavailability and brain delivery through olfactory system. Duloxetine-loaded proniosomes were optimized through Design-Expert Software, prepared by coacervation phase separation method and then characterized in vitro for different vesicle features, and permeation enhancement potential using various techniques. The formulation F2, out of all the trials, fulfilled the maximum requisite of highest entrapment efficiency (76.21 ± 1.24%) and minimum vesicle size (223.91 ± 11.07 nm). The F2 was embedded in thiolated chitosan gel rendering it mucoadhesive and further characterized. The in vitro release showed a sustained drug release from the mucoadhesive proniosomal gel with only 54% drug release as compared to that of 71% from proniosome over 8 h, following Higuchi drug release model. Ex vivo permeation studies showed the enhancement ratio for the mucoadhesive proniosomal gel to be 1.86-fold greater than proniosomes, indicating a significant improvement in transmucosal permeation. The results suggest that incorporation of proniosomes into thiolated gel can significantly improve its mucoadhesion and retention time in the nasal cavity for providing a sustained drug release. Thus, gel formulation could be considered as a promising approach for efficient intranasal drug delivery of duloxetine.

Graphical Abstract


proniosome mucoadhesive thiolated chitosan duloxetine improved bioavailability 


Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interests.


  1. 1.
    Üstün TB, Ayuso-Mateos JL, Chatterji S, Mathers C, Murray C. Global burden of depressive disorders in the year 2000. Br J Psychiatry. 2004;184(5):386–92.PubMedGoogle Scholar
  2. 2.
    Olfson M, Marcus SC, Druss B, Elinson L, Tanielian T, Pincus HA. National trends in the outpatient treatment of depression. Jama. 2002;287(2):203–9.PubMedGoogle Scholar
  3. 3.
    Nemeroff CB. The burden of severe depression: a review of diagnostic challenges and treatment alternatives. J Psychiatr Res. 2007;41(3–4):189–206.PubMedGoogle Scholar
  4. 4.
    Detke MJ, Wiltse CG, Mallinckrodt CH, McNamara RK, Demitrack MA, Bitter I. Duloxetine in the acute and long-term treatment of major depressive disorder: a placebo-and paroxetine-controlled trial. Eur Neuropsychopharmacol. 2004;14(6):457–70.PubMedGoogle Scholar
  5. 5.
    Lantz R, Gillespie T, Rash T, Kuo F, Skinner M, Kuan H, et al. Metabolism, excretion, and pharmacokinetics of duloxetine in healthy human subjects. Drug Metab Dispos. 2003;31(9):1142–50.PubMedGoogle Scholar
  6. 6.
    Alam MI, Baboota S, Kohli K, Ali J, Ahuja A. Pharmacodynamic evaluation of proniosomal transdermal therapeutic gel containing celecoxib. ScienceAsia. 2010;36(4):305–11.Google Scholar
  7. 7.
    Gharbavi M, Amani J, Kheiri-Manjili H, Danafar H, Sharafi A. Niosome: a promising nanocarrier for natural drug delivery through blood-brain barrier. Adv Pharmacol Sci. 2018;2018:1–15.Google Scholar
  8. 8.
    Yadav K, Yadav D, Saroha K, Nanda S, Mathur P, Syan N. Proniosomal gel: a provesicular approach for transdermal drug delivery. Pharm Lett. 2010;2(4):189–98.Google Scholar
  9. 9.
    Hassan S, Prakash G, Ozturk AB, Saghazadeh S, Sohail MF, Seo J, et al. Evolution and clinical translation of drug delivery nanomaterials. Nano Today. 2017;15:91–106.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Yasam VR, Jakki SL, Natarajan J, Kuppusamy G. A review on novel vesicular drug delivery: proniosomes. Drug Deliv. 2014;21(4):243–9.PubMedGoogle Scholar
  11. 11.
    Thorne R, Hanson L, Ross T, Tung D, Frey IW. Delivery of interferon-β to the monkey nervous system following intranasal administration. Neuroscience. 2008;152(3):785–97.PubMedGoogle Scholar
  12. 12.
    Alam MI, Beg S, Samad A, Baboota S, Kohli K, Ali J, et al. Strategy for effective brain drug delivery. Eur J Pharm Sci. 2010;40(5):385–403.PubMedGoogle Scholar
  13. 13.
    Sonvico F, Clementino A, Buttini F, Colombo G, Pescina S, Stanisçuaski Guterres S, et al. Surface-modified nanocarriers for nose-to-brain delivery: from bioadhesion to targeting. Pharmaceutics. 2018;10(1):34.PubMedCentralGoogle Scholar
  14. 14.
    Sajjad M, Khan MI, Naveed S, Ijaz S, Qureshi OS, Raza SA, et al. Folate-functionalized thiomeric nanoparticles for enhanced docetaxel cytotoxicity and improved oral bioavailability. AAPS PharmSciTech. 2019;20(2):81.PubMedGoogle Scholar
  15. 15.
    Afzal I, Sarwar HS, Sohail MF, Varikuti S, Jahan S, Akhtar S, Yasinzai M, Satoskar AR, Shahnaz G Mannosylated thiolated paromomycin-loaded PLGA nanoparticles for the oral therapy of visceral leishmaniasis. Nanomedicine. 2019;(0), 14, 387, 406.PubMedGoogle Scholar
  16. 16.
    Sohail MF, Javed I, Hussain SZ, Sarwar S, Akhtar S, Nadhman A, et al. Folate grafted thiolated chitosan enveloped nanoliposomes with enhanced oral bioavailability and anticancer activity of docetaxel. J Mater Chem B. 2016;4(37):6240–8.Google Scholar
  17. 17.
    Azeem A, Jain N, Iqbal Z, Ahmad FJ, Aqil M, Talegaonkar S. Feasibility of proniosomes-based transdermal delivery of frusemide: formulation optimization and pharmacotechnical evaluation. Pharm Dev Technol. 2008;13(2):155–63.PubMedGoogle Scholar
  18. 18.
    Khalil RM, Abdelbary GA, Basha M, Awad GE, El-Hashemy HA. Design and evaluation of proniosomes as a carrier for ocular delivery of lomefloxacin HCl. J Liposome Res. 2017;27(2):118–29.PubMedGoogle Scholar
  19. 19.
    Sarwar HS, Sohail MF, Saljoughian N, Rehman AU, Akhtar S, Nadhman A, et al. Design of mannosylated oral amphotericin B nanoformulation: efficacy and safety in visceral leishmaniasis. Artif Cell Nanomed Biotechnol. 2018:1–11.Google Scholar
  20. 20.
    Mehta M, Garg M. Development and optimization of boswellic acids loaded proniosomal gel. Planta Med. 2016;82(S 01):P1033.Google Scholar
  21. 21.
    Sohail MF, Hussain SZ, Saeed H, Javed I, Sarwar HS, Nadhman A, et al. Polymeric nanocapsules embedded with ultra-small silver nanoclusters for synergistic pharmacology and improved oral delivery of docetaxel. Sci Rep. 2018;8(1):13304.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Shahnaz G, Perera G, Sakloetsakun D, Rahmat D, Bernkop-Schnürch A. Synthesis, characterization, mucoadhesion and biocompatibility of thiolated carboxymethyl dextran–cysteine conjugate. J Control Release. 2010;144(1):32–8.PubMedGoogle Scholar
  23. 23.
    Shahnaz G, Vetter A, Barthelmes J, Rahmat D, Laffleur F, Iqbal J, et al. Thiolated chitosan nanoparticles for the nasal administration of leuprolide: bioavailability and pharmacokinetic characterization. Int J Pharm. 2012;428(1–2):164–70.PubMedGoogle Scholar
  24. 24.
    Farid RM, Etman MA, Nada AH, Abd El Azeem RE. Formulation and in vitro evaluation of salbutamol sulphate in situ gelling nasal inserts. AAPS Pharm Sci Tech. 2013;14(2):712–8.Google Scholar
  25. 25.
    Rahman SA, Abdelmalak NS, Badawi A, Elbayoumy T, Sabry N, Ramly AE. Formulation of tretinoin-loaded topical proniosomes for treatment of acne: in-vitro characterization, skin irritation test and comparative clinical study. Drug Deliv. 2015;22(6):731–9.PubMedGoogle Scholar
  26. 26.
    Joshi M, Patravale V. Formulation and evaluation of nanostructured lipid carrier (NLC)–based gel of Valdecoxib. Drug Dev Ind Pharm. 2006;32(8):911–8.PubMedGoogle Scholar
  27. 27.
    Laffleur F, Hintzen F, Shahnaz G, Rahmat D, Leithner K, Bernkop-Schnürch A. Development and in vitro evaluation of slippery nanoparticles for enhanced diffusion through native mucus. Nanomedicine. 2014;9(3):387–96.PubMedGoogle Scholar
  28. 28.
    Iqbal J, Shahnaz G, Perera G, Hintzen F, Sarti F, Bernkop-Schnürch A. Thiolated chitosan: development and in vivo evaluation of an oral delivery system for leuprolide. Eur J Pharm Biopharm. 2012;80(1):95–102.PubMedGoogle Scholar
  29. 29.
    Washington N, Steele R, Jackson S, Bush D, Mason J, Gill D, et al. Determination of baseline human nasal pH and the effect of intranasally administered buffers. Int J Pharm. 2000;198(2):139–46.PubMedGoogle Scholar
  30. 30.
    Sarwar HS, Ashraf S, Akhtar S, Sohail MF, Hussain SZ, Rafay M, et al. Mannosylated thiolated polyethylenimine nanoparticles for the enhanced efficacy of antimonial drug against Leishmaniasis. Nanomedicine. 2018;13(1):25–41.PubMedGoogle Scholar
  31. 31.
    Sohail MF, Shah PA, Tariq I, Saeed-ul-Hassan S, Amin U, Raza SA, et al. Development and in vitro evaluation of flurbiprofen microcapsules prepared by modified solvent evaporation technique. Trop J Pharm Res. 2014;13(7):1031–8.Google Scholar
  32. 32.
    Rahmat D, Müller C, Barthelmes J, Shahnaz G, Martien R, Bernkop-Schnürch A. Thiolated hydroxyethyl cellulose: design and in vitro evaluation of mucoadhesive and permeation enhancing nanoparticles. Eur J Pharm Biopharm. 2013;83(2):149–55.PubMedGoogle Scholar
  33. 33.
    Larrucea E, Arellano A, Santoyo S, Ygartua P. Combined effect of oleic acid and propylene glycol on the percutaneous penetration of tenoxicam and its retention in the skin. Eur J Pharm Biopharm. 2001;52(2):113–9.PubMedGoogle Scholar
  34. 34.
    Junyaprasert VB, Teeranachaideekul V, Supaperm T. Effect of charged and non-ionic membrane additives on physicochemical properties and stability of niosomes. AAPS PharmSciTech. 2008;9(3):851–9.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Gad HA, El-Nabarawi MA, El-Hady SSA. Formulation and evaluation of PLA and PLGA in situ implants containing secnidazole and/or doxycycline for treatment of periodontitis. AAPS PharmSciTech. 2008;9(3):878–84.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Dash S, Murthy PN, Nath L, Chowdhury P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm. 2010;67(3):217–23.PubMedGoogle Scholar
  37. 37.
    Ali J, Ali M, Baboota S, Kaur Sahni J, Ramassamy C, Dao L. Potential of nanoparticulate drug delivery systems by intranasal administration. Curr Pharm Des. 2010;16(14):1644–53.PubMedGoogle Scholar
  38. 38.
    Ravouru N, Kondreddy P, Korakanchi D. Formulation and evaluation of niosomal nasal drug delivery system of folic acid for brain targeting. Curr Drug Disc Technol. 2013;10(4):270–82.Google Scholar
  39. 39.
    Kilts CD. Potential new drug delivery systems for antidepressants: an overview. J Clin Psychiat. 2003;64:31–3.Google Scholar
  40. 40.
    Misra A, Ganesh S, Shahiwala A, Shah SP. Drug delivery to the central nervous system: a review. J Pharm Pharm Sci. 2003;6(2):252–73.PubMedGoogle Scholar
  41. 41.
    Ibrahim MMA, Sammour OA, Hammad MA, Megrab NA. In vitro evaluation of proniosomes as a drug carrier for flurbiprofen. AAPS Pharm Sci Tech. 2008;9(3):782–90.Google Scholar
  42. 42.
    Balakrishnan P, Shanmugam S, Lee WS, Lee WM, Kim JO, Oh DH, et al. Formulation and in vitro assessment of minoxidil niosomes for enhanced skin delivery. Int J Pharm. 2009;377(1–2):1–8.PubMedGoogle Scholar
  43. 43.
    Thomas L, Viswanad V. Formulation and optimization of clotrimazole-loaded proniosomal gel using 32 factorial design. Sci Pharm. 2012;80(3):731–48.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Hao Y, Zhao F, Li N, Yang Y. Li Ka. Studies on a high encapsulation of colchicine by a niosome system. Int J Pharm. 2002;244(1–2):73–80.PubMedGoogle Scholar
  45. 45.
    Peddapalli H, Chinnala KM, Banala N. Design and in vitro characterization of mucoadhesive buccal patches of duloxetine hydrochloride. Int J Pharm Pharm Sci. 2017;9:52–9.Google Scholar
  46. 46.
    Essa EA. Effect of formulation and processing variables on the particle size of sorbitan monopalmitate niosomes. Asian Journal of Pharmaceutics (AJP): Free full text articles from Asian J Pharm. 2014;4(4).Google Scholar
  47. 47.
    Naskar S, Koutsu K, Sharma S. Chitosan-based nanoparticles as drug delivery systems: a review on two decades of research. J Drug Target. 2019;27(4):379–93.PubMedGoogle Scholar
  48. 48.
    Roldo M, Hornof M, Caliceti P, Bernkop-Schnürch A. Mucoadhesive thiolated chitosans as platforms for oral controlled drug delivery: synthesis and in vitro evaluation. Eur J Pharm Biopharm. 2004;57(1):115–21.PubMedGoogle Scholar
  49. 49.
    Son G-H, Lee B-J, Cho C-W. Mechanisms of drug release from advanced drug formulations such as polymeric-based drug-delivery systems and lipid nanoparticles. J Pharml Investig. 2017;47(4):287–96.Google Scholar
  50. 50.
    Kamaly N, Yameen B, Wu J, Farokhzad OC. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem Rev. 2016;116(4):2602–63.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Singhvi G, Singh M. In-vitro drug release characterization models. Int J Pharm Stud Res. 2011;2(1):77–84.Google Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2019

Authors and Affiliations

  • Maryam khatoon
    • 1
  • Muhammad Farhan Sohail
    • 1
    • 2
  • Gul Shahnaz
    • 1
  • Fiza ur Rehman
    • 1
  • Fakhar-ud-Din
    • 1
  • Asim ur Rehman
    • 1
  • Naseem Ullah
    • 1
  • Umair Amin
    • 3
  • Gul Majid Khan
    • 1
  • Kifayat Ullah Shah
    • 1
    Email author
  1. 1.Department of Pharmacy, Faculty of Biological SciencesQuaid-i-Azam UniversityIslamabadPakistan
  2. 2.Riphah Institute of Pharmaceutical SciencesRiphah International UniversityLahorePakistan
  3. 3.Department of Pharmaceutics and BiopharmaceuticsPhilipps University MarburgMarburgGermany

Personalised recommendations