Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Isolation of Itraconazole Nanostructured Microparticles via Spray Drying with Rational Selection of Optimum Base for Successful Reconstitution and Compaction

Abstract

The addition of matrix formers within a formulation provides a means for enhancing the redispersibility of nanoparticles (NPs) enabling them to retain their advantageous properties imparted onto them by their sub-micron size. In this work, NPs were isolated in the solid state via spray drying with a range of sugars. The processed powders were characterized, establishing that itraconazole (ITR) nanostructured microparticles (NMPs) spray dried in the presence of mannitol and trehalose had favorable redispersibility confirmed by dynamic light scattering and nanoparticle tracking analysis. Solid-state analysis confirmed the crystalline nature of NMPs based on mannitol and the amorphous character of trehalose-based NMPs. The NMPs powders were compacted at a range of pressures, producing tablets with high tensile strength without compromising their disintegration time. A greater amount of ITR was solubilized from trehalose NMPs compared to the mannitol-based compacts in 0.1 M HCl, showing a promise for enhanced in vivo activity. Overall, as trehalose exhibited superior carrier properties for ITR NMPs, this type of excipient included in the formulation warrants careful consideration. The structured approach to matrix former selection and tabletting studies can reduce the amount of material and time required for testing in the initial stages of product development.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Kalepu S, Nekkanti V. Insoluble drug delivery strategies: review of recent advances and business prospects. Acta Pharm Sin B. 2015;5:442–53. https://doi.org/10.1016/j.apsb.2015.07.003.

  2. 2.

    Prajapati HN, Dalrymple DM, Serajuddin ATM. A comparative evaluation of mono-, di- and triglyceride of medium chain fatty acids by lipid/surfactant/water phase diagram, solubility determination and dispersion testing for application in pharmaceutical dosage form development. Pharm Res. 2012;29:285–305. https://doi.org/10.1007/s11095-011-0541-3.

  3. 3.

    Medina C, Santos-Martinez MJ, Radomski A, Corrigan OI, Radomski MW. Nanoparticles: pharmacological and toxicological significance. Br J Pharmacol. 2009;150:552–8. https://doi.org/10.1038/sj.bjp.0707130.

  4. 4.

    Lesniak A, Salvati A, Santos-Martinez MJ, Radomski MW, Dawson KA, Åberg C. Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency. J Am Chem Soc. 2013;135:1438–44. https://doi.org/10.1021/ja309812z.

  5. 5.

    Molpeceres J, Berges L, Guzman M, Aberturas MR, Chacon M. Stability and freeze-drying of cyclosporine loaded poly ( D , L lactide–glycolide ) carriers. Eur J Pharm Sci. 1999;8(2):99–107. https://doi.org/10.1016/S0928-0987(98)00066-9.

  6. 6.

    Malamatari M, Somavarapu S, Taylor KMG, Buckton G. Solidification of nanosuspensions for the production of solid oral dosage forms and inhalable dry powders. Expert Opin Drug Deliv. 2016;13(3):435–50. https://doi.org/10.1517/17425247.2016.1142524.

  7. 7.

    Masters K. Spray drying. London: Wiley; 1976.

  8. 8.

    Tsapis N, Bennett D, Jackson B, Weitz DA, Edwards DA. Trojan particles: large porous carriers of nanoparticles for drug delivery. Proc Natl Acad Sci. 2002;99(19):12001–5. https://doi.org/10.1073/pnas.182233999.

  9. 9.

    Nekkanti V, Pillai R, Venkateshwarlu V, Harisudhan T. Development and characterization of solid oral dosage form incorporating candesartan nanoparticles. Pharm Dev Technol. 2009;14(3):290–8. https://doi.org/10.1080/10837450802585278.

  10. 10.

    Chaubal MV, Popescu C. Conversion of nanosuspensions into dry powders by spray drying: a case study. Pharm Res. 2008;25(10):2302–8. https://doi.org/10.1007/s11095-008-9625-0.

  11. 11.

    Teeranachaideekul V, Junyaprasert VB, Souto EB, Müller RH. Development of ascorbyl palmitate nanocrystals applying the nanosuspension technology. Int J Pharm. 2008;354(1–2):227–34. https://doi.org/10.1016/j.ijpharm.2007.11.062.

  12. 12.

    Mou D, Chen H, Wan J, Xu H, Yang X. Potent dried drug nanosuspensions for oral bioavailability enhancement of poorly soluble drugs with pH-dependent solubility. Int J Pharm. 2011;413(1–2):237–44. https://doi.org/10.1016/j.ijpharm.2011.04.034.

  13. 13.

    Adolfsson Å, Nyström C. Tablet strength, porosity, elasticity and solid state structure of tablets compressed at high loads. Int J Pharm. 1996;132(1–2):95–106. https://doi.org/10.1016/0378-5173(95)04336-5.

  14. 14.

    Kesisoglou F, Panmai S, Wu Y. Nanosizing—oral formulation development and biopharmaceutical evaluation. Adv Drug Deliv Rev. 2007;59:631–44. https://doi.org/10.1016/j.addr.2007.05.003.

  15. 15.

    Amaro MI, Tewes F, Gobbo O, Tajber L, Corrigan OI, Ehrhardt C, et al. Formulation, stability and pharmacokinetics of sugar-based salmon calcitonin-loaded nanoporous/nanoparticulate microparticles (NPMPs) for inhalation. Int J Pharm. 2015;483(1–2):6–18. https://doi.org/10.1016/j.ijpharm.2015.02.003.

  16. 16.

    Tan EH, Parmentier J, Low A, Möschwitzer JP. Downstream drug product processing of itraconazole nanosuspension: factors influencing tablet material properties and dissolution of compacted nanosuspension-layered sugar beads. Int J Pharm. 2017;532(1):131–8. https://doi.org/10.1016/j.ijpharm.2017.08.107.

  17. 17.

    Mugheirbi NA, Paluch KJ, Tajber L. Heat induced evaporative antisolvent nanoprecipitation (HIEAN) of itraconazole. Int J Pharm. 2014;471(1–2):400–11. https://doi.org/10.1016/j.ijpharm.2014.05.045.

  18. 18.

    Mugheirbi NA, Tajber L. Mesophase and size manipulation of itraconazole liquid crystalline nanoparticles produced via quasi nanoemulsion precipitation. Eur J Pharm Biopharm. 2015;96:226–36. https://doi.org/10.1016/j.ejpb.2015.08.005.

  19. 19.

    McComiskey KPM, Mugheirbi NA, Stapleton J, Tajber L. In situ monitoring of nanoparticle formation: antisolvent precipitation of azole anti-fungal drugs. Int J Pharm. 2018;543(1–2):201–13. https://doi.org/10.1016/j.ijpharm.2018.03.054.

  20. 20.

    McComiskey KPM, Tajber L. Comparison of particle size methodology and assessment of nanoparticle tracking analysis (NTA) as a tool for live monitoring of crystallisation pathways. Eur J Pharm Biopharm. 2018;130:314–26. https://doi.org/10.1016/j.ejpb.2018.07.012.

  21. 21.

    Van Eerdenbrugh B, Van den Mooter G, Augustijns P. Top-down production of drug nanocrystals: nanosuspension stabilization, miniaturization and transformation into solid products. Int J Pharm. 2008;364:64–75. https://doi.org/10.1016/j.ijpharm.2008.07.023.

  22. 22.

    Wlodarski K, Sawicki W, Kozyra A, Tajber L. Physical stability of solid dispersions with respect to thermodynamic solubility of tadalafil in PVP-VA. Eur J Pharm Biopharm. 2015;96:237–46. https://doi.org/10.1016/j.ejpb.2015.07.026.

  23. 23.

    Littringer EM, Mescher A, Schroettner H, Achelis L, Walzel P, Urbanetz NA. Spray dried mannitol carrier particles with tailored surface properties—the influence of carrier surface roughness and shape. Eur J Pharm Biopharm. 2012;82:194–204. https://doi.org/10.1016/j.ejpb.2012.05.001.

  24. 24.

    Yang M, Lee Y, Wu J, Young PM, Van Den BF, Rantanen J. Polymorphism of spray-dried mannitol as a function of particle size : effect of lysozyme. Eur J Pharm Sci. 2011;44(1–2):489–92. https://doi.org/10.1016/j.ejps.2011.06.002.

  25. 25.

    USP 39-NF 34. General Chapter 701.

  26. 26.

    Matteucci ME, Paguio JC, Miller MA, Williams RO, Johnston KP. Highly supersaturated solutions from dissolution of amorphous ltraconazole microparticles at pH 6.8. Mol Pharm. 2009;6(2):375–85. https://doi.org/10.1021/mp800106a.

  27. 27.

    Wang Y, Zheng Y, Zhang L, Wang Q, Zhang D. Stability of nanosuspensions in drug delivery. J Control Release. 2013;172:1126–41. https://doi.org/10.1016/j.jconrel.2013.08.006.

  28. 28.

    Van Eerdenbrugh B, Froyen L, Van Humbeeck J, Martens JA, Augustijns P, Van den Mooter G. Drying of crystalline drug nanosuspensions—the importance of surface hydrophobicity on dissolution behavior upon redispersion. Eur J Pharm Sci. 2008;35(1–2):127–35. https://doi.org/10.1016/j.ejps.2008.06.009.

  29. 29.

    Simperler A, Kornherr A, Chopra R, Bonnet PA, Jones W, Motherwell WDS, et al. Glass transition temperature of glucose, sucrose, and trehalose: an experimental and in silico study. J Phys Chem B. 2006;110(39):19678–84. https://doi.org/10.1021/jp063134t.

  30. 30.

    Roos Y, Karel M. Plasticizing effect of water on thermal behavior and crystallization of amorphous food models. J Food Sci. 1991;56(1):38–43. https://doi.org/10.1111/j.1365-2621.1991.tb07970.x.

  31. 31.

    Foster KD, Bronlund JE, Paterson AHJ. Glass transition related cohesion of amorphous sugar powders. J Food Eng. 2006;77(4):997–1006. https://doi.org/10.1016/j.jfoodeng.2005.08.028.

  32. 32.

    Moura Ramos JJ, Pinto SS, Diogo HP. Molecular mobility in raffinose in the crystalline pentahydrate form and in the amorphous anhydrous form. Pharm Res. 2005;22(7):1142–8. https://doi.org/10.1007/s11095-005-5645-1.

  33. 33.

    Hulse WL, Forbes RT, Bonner MC, Getrost M. The characterization and comparison of spray-dried mannitol samples characterization of spray-dried mannitol. Drug Dev Ind Pharm. 2009;35(6):712–8. https://doi.org/10.1080/03639040802516491.

  34. 34.

    Yalkowsky SH, Dannenfelser RM. The aquasol database of aqueous solubility. Fifth Ed. Tucson: Univ Az, College of Pharmacy; 1992.

  35. 35.

    Jain NK, Roy I. Effect of trehalose on protein structure. Protein Sci. 2009;18(1):24–36. https://doi.org/10.1002/pro.3.

  36. 36.

    Storey BT, Noiles EE, Thompson KA. Comparison of glycerol, other polyols, trehalose, and raffinose to provide a defined cryoprotectant medium for mouse sperm cryopreservation. Cryobiology. 1998;37(1):46–58. https://doi.org/10.1006/cryo.1998.2097.

  37. 37.

    Badawy SIF, Shah KR, Surapaneni MS, Szemraj MM, Hussain M. Effect of spray-dried mannitol on the performance of microcrystalline cellulose-based wet granulated tablet formulation. Pharm Dev Technol. 2010;15(4):339–45. https://doi.org/10.3109/10837450903229065.

  38. 38.

    Cue BW, Zhang J. Green process chemistry in the pharmaceutical industry. Green Chem Lett Rev. 2009;2:193–211. https://doi.org/10.1080/17518250903258150.

  39. 39.

    Saleki-Gerhardt A, Ahlneck C, Zografi G. Assessment of disorder in crystalline solids. Int J Pharm. 1994;101(3):237–47. https://doi.org/10.1016/0378-5173(94)90219-4.

  40. 40.

    Buckton G, Darcy P. The use of gravimetric studies to assess the degree of crystallinity of predominantly crystalline powders. Int J Pharm. 1995;123(2):265–71. https://doi.org/10.1016/0378-5173(95)00083-U.

  41. 41.

    Garr JSM, Rubinstein M. The effect of rate of force application on the properties of microcrystalline cellulose and dibasic calcium phosphate mixtures. Int J Pharm. 1991;73(1):75–80. https://doi.org/10.1016/0378-5173(91)90102-T.

  42. 42.

    Pitt KG, Newton JM, Richardson R, Stanley P. The material tensile strength of convex-faced aspirin tablets. J Pharm Pharmacol. 1989;41(5):289–92. https://doi.org/10.1111/j.2042-7158.1989.tb06458.x.

  43. 43.

    Maggi L, Conte U, Bettinetti GP. Technological properties of crystalline and amorphous α-cyclodextrin hydrates. Int J Pharm. 1998;172(1–2):211–7. https://doi.org/10.1016/S0378-5173(98)00209-9.

  44. 44.

    Paluch KJ, Tajber L, Corrigan OI, Healy AM. Impact of alternative solid state forms and specific surface area of high-dose, hydrophilic active pharmaceutical ingredients on tabletability. Mol Pharm. 2013;10(10):3628–39. https://doi.org/10.1021/mp400124z.

  45. 45.

    Kumar S, Jog R, Shen J, Zolnik B, Sadrieh N, Burgess DJ. In vitro and in vivo performance of different sized spray-dried crystalline itraconazole. J Pharm Sci. 2015;104:3018–28. https://doi.org/10.1002/jps.24155.

  46. 46.

    Sun W, Mao S, Shi Y, Li LC, Fang L. Nanonization of itraconazole by high pressure homogenization: stabilizer optimization and effect of particle size on oral absorption. J Pharm Sci. 2011;100:3365–73. https://doi.org/10.1002/jps.22587.

  47. 47.

    Saleh A, McGarry K, Chaw CS, Elkordy AA. Feasibility of using gluconolactone, trehalose and hydroxy-propyl gamma cyclodextrin to enhance bendroflumethiazide dissolution using lyophilisation and physical mixing techniques. Pharmaceutics. 2018;10. https://doi.org/10.3390/pharmaceutics10010022.

Download references

Acknowledgements

Research leading to these results was supported by the Synthesis and Solid State Pharmaceutical Centre (SSPC), financed by a research grant from Science Foundation Ireland (SFI) and co-funded under the European Regional Development Fund (Grant Number 12/RC/2275). The authors would like to thank Mark Lynch for his help in the study.

Author information

Correspondence to Lidia Tajber.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1286 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

McComiskey, K.P.M., McDonagh, A. & Tajber, L. Isolation of Itraconazole Nanostructured Microparticles via Spray Drying with Rational Selection of Optimum Base for Successful Reconstitution and Compaction. AAPS PharmSciTech 20, 217 (2019). https://doi.org/10.1208/s12249-019-1436-6

Download citation

KEY WORDS

  • itraconazole
  • nanoparticle
  • spray drying
  • solid state
  • tablets