AAPS PharmSciTech

, 20:188 | Cite as

Dual-Ligand Modification of PEGylated Liposomes Used for Targeted Doxorubicin Delivery to Enhance Anticancer Efficacy

  • Cong Li
  • Chaoyang Lai
  • Qiujun Qiu
  • Xiang Luo
  • Ling Hu
  • Huangliang Zheng
  • Yi Lu
  • Min Liu
  • Hongxia Zhang
  • Xinrong Liu
  • Yihui DengEmail author
  • Yanzhi SongEmail author
Research Article


Mannose receptor (CD206) and E-selectin are selectively expressed in M2-like tumor-associated macrophages (M2-TAMs) and activated endothelial cells of vessels surrounding tumor tissues. With the knowledge that d-mannose is the natural ligand of mannose receptors and l-fucose is the key calcium chelator for tumor-associated carbohydrate antigens (TACAs) binding to E-selectin, herein, we firstly reported d-mannose polyethylene glycol (PEG) conjugates (Man-PEG) and l-fucose PEG conjugates (Fuc-PEG) co-modified liposomal doxorubicin (DOX-MFPL) to improve tumor-targeting ability. The dual-ligand modified PEGylated liposomes (DOX-MFPL) were assessed by both in vitro and in vivo trials. Compared with the single-ligand d-mannose- or l-fucose-modified liposomes (DOX-MPL or DOX-FPL), DOX-MFPL achieved an increased distribution of DOX in tumor tissues. The antitumor study based on S180 tumor-bearing mice was conducted and the superior tumor inhibitory rate was shown with DOX-MFPL, probably owing to the superior tumor-targeting effect of DOX-MFPL and the modulation of the tumor microenvironment with the exhaustion of TAMs. In general, the dual-ligand drug delivery systems are expected to be promising in the development of specific and efficient methods for tumor treatment.


dual-ligand mannose receptor E-selectin doxorubicin tumor targeting 


Funding Information

This research was supported by the National Natural Science Foundation of China (No. 81573375), the National Natural Science Foundation of China (Grant No. 81703456), and the Liaoning Natural Science Foundation of China (Grant No. 201601140).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12249_2019_1385_MOESM1_ESM.docx (608 kb)
ESM 1 (DOCX 608 kb)


  1. 1.
    Gajewski TF, Schreiber H, Fu YX. Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol. 2013;14(10):1014–22.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet. 2001;357(9255):539–45.PubMedGoogle Scholar
  3. 3.
    Mantovani A, Sozzani S, Locati M, et al. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002;23(11):549–55.PubMedGoogle Scholar
  4. 4.
    Mantovani A, Schioppa T, Porta C, Allavena P, Sica A. Role of tumor-associated macrophages in tumor progression and invasion. Cancer Metastasis Rev. 2006;25(3):315–22.PubMedGoogle Scholar
  5. 5.
    Solinas G, Germano G, Mantovani A, Allavena P. ChemInform abstract: tumor〢ssociated macrophages (TAM) as major players of the cancer In elated inflammation. Cheminform. 2010;41.Google Scholar
  6. 6.
    Martinez FO, Sica A, Mantovani A, Locati M. Macrophage activation and polarization. Front Biosci. 2008;13(2):453.PubMedGoogle Scholar
  7. 7.
    Goldstein JL, Anderson RGW, Brown MS. Coated pits, coated vesicles, and receptor-mediated endocytosis. Nature. 1979;279(5715):679–85.PubMedGoogle Scholar
  8. 8.
    Gao H, Shi W, Freund LB. Mechanics of receptor-mediated endocytosis. Proc Natl Acad Sci U S A. 2005;102(27):9469–74.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Yoshihiro K, Masahisa J, Motohiro T. Clinical significance of macrophage heterogeneity in human malignant tumors. Cancer Sci. 2014;105(1):1–8.Google Scholar
  10. 10.
    AN Z, JE G. The C-type lectin-like domain superfamily. FEBS J. 2010;272(24):6179–217.Google Scholar
  11. 11.
    Fritz JM, Tennis MA, Orlicky DJ, Yin H, Ju C, Redente EF, et al. Depletion of tumor-associated macrophages slows the growth of chemically induced mouse lung adenocarcinomas. Front Immunol. 2014;5:587.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Locke LW, Mayo MW, Yoo AD, Williams MB, Berr SS. PET imaging of tumor associated macrophages using mannose coated 64 Cu liposomes. Biomaterials. 2012;33(31):7785–93.PubMedGoogle Scholar
  13. 13.
    Kibria G, Hatakeyama H, Ohga N, Hida K, Harashima H. Dual-ligand modification of PEGylated liposomes shows better cell selectivity and efficient gene delivery. J Control Release. 2011;153(2):141–8.PubMedGoogle Scholar
  14. 14.
    Montgomery KF, Osborn L, Hession C, Tizard R, Goff D, Vassallo C, et al. Activation of endothelial-leukocyte adhesion molecule 1 (ELAM-1) gene transcription. Proc Natl Acad Sci U S A. 1991;88(15):6523–7.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Wong D, Dorovini-Zis K. Regualtion by cytokines and lipopolysaccharide of E-selectin expression by human brain microvessel endothelial cells in primary culture. J Neuropathol Exp Neurol. 1996;55(2):225–35.PubMedGoogle Scholar
  16. 16.
    Kiriyama K, Ye C. [E-selectin expression in serum and tissue correlates with distant metastasis of colorectal cancer]. Nihon Rinsho Japanese. J Clin Med. 1995;53(7):1760.Google Scholar
  17. 17.
    Hirai M, Minematsu H, Hiramatsu Y, Kitagawa H, Otani T, Iwashita S, et al. Novel and simple loading procedure of cisplatin into liposomes and targeting tumor endothelial cells. Int J Pharm. 2010;391(1):274–83.PubMedGoogle Scholar
  18. 18.
    Vodovozova EL, Moiseeva EV, Grechko GK, Gayenko GP, Nifant'Ev NE, Bovin NV, et al. Antitumour activity of cytotoxic liposomes equipped with selectin ligand SiaLe(X), in a mouse mammary adenocarcinoma model. Eur J Cancer. 2000;36(7):942–9.PubMedGoogle Scholar
  19. 19.
    Read TA, Fogarty MP, Markant SL, Mclendon RE, Wei Z, Ellison DW, et al. Identification of CD15 as a marker for tumor-propagating cells in a mouse model of medulloblastoma. Cancer Cell. 2009;15(2):135–47.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Brooks SA, Leathem AJ. Expression of the CD15 antigen (Lewis x) in breast cancer. Histochem J. 1995;27(9):689–93.PubMedGoogle Scholar
  21. 21.
    Wright LC, May GL, Gregory P, Dyne M, Holmes KT, Williams PG, et al. Inhibition of metastatic potential by fucosidase: an NMR study identifies a cell surface metastasis marker. J Cell Biochem. 1988;37(1):49–59.PubMedGoogle Scholar
  22. 22.
    Schwartz R, Schirrmacher V, Mühlradt PF. Glycoconjugates of murine tumor lines with different metastatic capacities. I. Differences in fucose utilization and in glycoprotein patterns. Int J Cancer. 2010;33(4):503–9.Google Scholar
  23. 23.
    Dejana E, Martin-Padura I, Lauri D, Bernasconi S, Bani MR, Garofalo A, et al. Endothelial leukocyte adhesion molecule-1-dependent adhesion of colon carcinoma cells to vascular endothelium is inhibited by an antibody to Lewis fucosylated type I carbohydrate chain. Lab Investig. 1992;66(3):324–30.PubMedGoogle Scholar
  24. 24.
    Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev. 2013;65(1):36–48.PubMedGoogle Scholar
  25. 25.
    Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov. 2005;4(2):145–60.PubMedGoogle Scholar
  26. 26.
    Allen TM. Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer. 2002;2(10):750–63.PubMedGoogle Scholar
  27. 27.
    Allen TM, Brandeis E, Hansen CB, Kao GY, Zalipsky S. A new strategy for attachment of antibodies to sterically stabilized liposomes resulting in efficient targeting to cancer cells. Biochim Biophys Acta Biomembr. 1995;1237(2):99–108.Google Scholar
  28. 28.
    Hortobágyi GN. Anthracyclines in the treatment of cancer. An overview. Drugs. 1997;54(4):1–7.PubMedGoogle Scholar
  29. 29.
    Arnold RD, Slack JE, Straubinger RM. Quantification of doxorubicin and metabolites in rat plasma and small volume tissue samples by liquid chromatography/electrospray tandem mass spectroscopy. J Chromatogr B. 2004;808(2):141–52.Google Scholar
  30. 30.
    Mayer LD, Tai LC, Ko DS, Masin D, Ginsberg RS, Cullis PR, et al. Influence of vesicle size, lipid composition, and drug-to-lipid ratio on the biological activity of liposomal doxorubicin in mice. Cancer Res. 1989;49(21):5922–30.PubMedGoogle Scholar
  31. 31.
    Lai C, Li C, Luo X, Liu M, Liu X, Hu L, et al. Use of dual-ligand modification in Kupffer cell-targeted liposomes to examine the contribution of Kupffer cells to accelerated blood clearance (ABC) phenomenon. Mol Pharm. 2018;15:2548–58.PubMedGoogle Scholar
  32. 32.
    Maruyama K. Intracellular targeting delivery of liposomal drugs to solid tumors based on EPR effects. Adv Drug Deliv Rev. 2011;63(3):161–9.PubMedGoogle Scholar
  33. 33.
    Kong G, Anyarambhatla G, Petros WP, Braun RD, Colvin OM, Needham D, et al. Efficacy of liposomes and hyperthermia in a human tumor xenograft model: importance of triggered drug release. Cancer Res. 2000;60(24):6950–7.PubMedGoogle Scholar
  34. 34.
    Huang WC, Chen SH, Chiang WH, Huang CW, Lo CL, Chern CS, et al. Tumor microenvironment-responsive nanoparticle delivery of chemotherapy for enhanced selective cellular uptake and transportation within tumor. Biomacromolecules. 2016;17(12):3883–92.PubMedGoogle Scholar
  35. 35.
    Song X, Wan Z, Chen T, Fu Y, Jiang K, Yi X, et al. Development of a multi-target peptide for potentiating chemotherapy by modulating tumor microenvironment. Biomaterials. 2016;108:44–56.PubMedGoogle Scholar
  36. 36.
    Bailon P, Won CY. PEG-modified biopharmaceuticals. Expert Opin Drug Deliv. 2009;6(1):1–16.PubMedGoogle Scholar
  37. 37.
    Choi KM, Kashyap PC, Dutta N, Stoltz GJ, Ordog T, Shea DT, et al. CD206-positive M2 macrophages that express heme oxygenase-1 protect against diabetic gastroparesis in mice. Gastroenterology. 2010;138(7):2399–409.e1.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Gabizon A, Shmeeda H, Barenholz Y. Pharmacokinetics of pegylated liposomal doxorubicin: review of animal and human studies. Clin Pharmacokinet. 2003;42(5):419–36.PubMedGoogle Scholar
  39. 39.
    Fang J, Nakamura H, Maeda H. The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev. 2011;63(3):136–51.PubMedGoogle Scholar
  40. 40.
    Wang JW, Ambros RA, Weber PB, Rosano TG. Fucosyltransferase and alpha-L-fucosidase activities and fucose levels in normal and malignant endometrial tissue. Cancer Res. 1995;55(16):3654–8.PubMedGoogle Scholar
  41. 41.
    Cook WJ, Bugg CE. Calcium-carbohydrate bridges composed of uncharged sugars. Structure of a hydrated calcium bromide complex of α-fucose. BBA - Biomembranes. 1975;389(3):428–35.PubMedGoogle Scholar
  42. 42.
    Komohara Y, Takeya M. CAFs and TAMs: maestros of the tumour microenvironment. J Pathol. 2017;241(3):313–5.PubMedGoogle Scholar
  43. 43.
    Massóvallés D, Jauset T, Serrano E, Sodir NM, Pedersen K, Affara NI, et al. Ibrutinib exerts potent antifibrotic and antitumor activities in mouse models of pancreatic adenocarcinoma. Cancer Res. 2015;75(8):1675–81.Google Scholar
  44. 44.
    Brady MJ, Cella DF, Mo F, Bonomi AE, Tulsky DS, Lloyd SR, et al. Reliability and validity of the functional assessment of cancer therapy-breast quality-of-life instrument. J Clin Oncol. 1997;15(3):974–86.PubMedGoogle Scholar
  45. 45.
    Luo X, Hu L, Zheng H, Liu M, Liu X, Li C, et al. Neutrophil-mediated delivery of pixantrone-loaded liposomes decorated with poly(sialic acid)–octadecylamine conjugate for lung cancer treatment. Drug Deliv. 2018;25:1200–12.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF, et al. Analysis of nanoparticle delivery to tumours. Nat Rev Mater. 2016;1(5):16014–25.Google Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2019

Authors and Affiliations

  • Cong Li
    • 1
  • Chaoyang Lai
    • 1
    • 2
  • Qiujun Qiu
    • 1
  • Xiang Luo
    • 1
    • 3
  • Ling Hu
    • 1
  • Huangliang Zheng
    • 1
  • Yi Lu
    • 1
    • 2
  • Min Liu
    • 1
  • Hongxia Zhang
    • 1
  • Xinrong Liu
    • 1
  • Yihui Deng
    • 1
    Email author
  • Yanzhi Song
    • 1
    Email author
  1. 1.College of PharmacyShenyang Pharmaceutical UniversityShenyangChina
  2. 2.Livzon Mabpharm IncZhuhaiChina
  3. 3.College of Chemistry and Chemical EngineeringShaoxing UniversityShaoxingPeople’s Republic of China

Personalised recommendations