Advertisement

AAPS PharmSciTech

, 20:165 | Cite as

Poly (ɛ-Caprolactone) Nanoparticles with pH-Responsive Behavior Improved the In Vitro Antitumor Activity of Methotrexate

  • Letícia Bueno Macedo
  • Daniele Rubert Nogueira-Librelotto
  • Josiele de Vargas
  • Laís Engroff Scheeren
  • María Pilar Vinardell
  • Clarice Madalena Bueno RolimEmail author
Research Article
  • 5 Downloads

Abstract

A promising approach to achieve a more efficient antitumor therapy is the conjugation of the active molecule to a nanostructured delivery system. Therefore, the main objective of this research was to prepare nanoparticles (NPs), with the polymer poly (ε-caprolactone) (PCL), as a carrier for the antitumor drug methotrexate (MTX). A pH-responsive behavior was obtained through conjugation of the amino acid-based amphiphile, 77KL, to the NP matrix. The NPs showed mean hydrodynamic diameter and drug entrapment efficiency of 178.5 nm and 20.52%, respectively. Owing to its pH-sensitivity, the PCL-NPs showed membrane-lytic behavior upon reducing the pH value of surrounding media to 5.4, which is characteristic of the endosomal compartments. The in vitro antitumor assays demonstrated that MTX-loaded PCL-NPs have higher antiproliferative activity than free drug in MCF-7 cells and, to a lesser extent, in HepG2 cells. This same behavior was also achieved at mildly acidic conditions, characteristic of the tumor microenvironment. Altogether, the results evidenced the pH-responsive properties of the designed NPs, as well as the higher in vitro cytotoxicity compared to free MTX, representing thus a promising alternative for the antitumor therapy.

KEY WORDS

pH-responsive nanoparticles poloxamer lysine-based surfactant in vitro cell models cancer 

Notes

Funding Information

This research was supported by Grants 447548/2014-0 and 401069/2014-1 of Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq - Brazil) and 2293-2551/14-0 of Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS - Brazil). Letícia B. Macedo and Daniele R. Nogueira-Librelotto acknowledge Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES - Brazil) and CNPq - Brazil for the Master’s and Postdoctoral fellowships, respectively.

References

  1. 1.
    Nussbaumer S, Bonnabry P, Veuthey JL, Fleury-Souverain S. Analysis of anticancer drugs: a review. Talanta. 2011;85(5):2265–89.PubMedGoogle Scholar
  2. 2.
    Rubino FM. Separation methods for methotrexate, its structural analogues and metabolites. J Chromatogr B Biomed Sci Appl. 2001;764(1–2):217–54.PubMedGoogle Scholar
  3. 3.
    Jain A, Sharma G, Kushwah V, Garg NK, Kesharwani P, Ghoshal G, et al. Methotrexate and beta-carotene loaded- lipid polymer hybrid nanoparticles: a preclinical study for breast cancer. Nanomedicine. 2017;12(15):1851–72.PubMedGoogle Scholar
  4. 4.
    Gorjikhah F, Azizi Jalalian F, Salehi R, Panahi Y, Hasanzadeh A, Alizadeh E, et al. Preparation and characterization of PLGA-β-CD polymeric nanoparticles containing methotrexate and evaluation of their effects on T47D cell line. Artif Cells Nanomed Biotechnol. 2016;1401:1–9.Google Scholar
  5. 5.
    Jain DS, Bajaj AN, Athawale RB, Shikhande SS, Pandey A, Goel PN, et al. Thermosensitive PLA based nanodispersion for targeting brain tumor via intranasal route. Mater Sci Eng C. 2016;63:411–21.Google Scholar
  6. 6.
    Musmade KP, Deshpande PB, Musmade PB, Maliyakkal MN, Kumar AR, Reddy MS, et al. Methotrexate-loaded biodegradable nanoparticles: preparation, characterization and evaluation of its cytotoxic potential against U-343 MGa human neuronal glioblastoma cells. Bull Mater Sci. 2014;37(4):945–51.Google Scholar
  7. 7.
    Jain A, Jain A, Garg NK, Tyagi RK, Singh B, Katare OP, et al. Surface engineered polymeric nanocarriers mediate the delivery of transferrin–methotrexate conjugates for an improved understanding of brain cancer. Acta Biomater. 2015;24:140–51.PubMedGoogle Scholar
  8. 8.
    Yurgel VC, Oliveira CP, Begnini KR, Schultze E, Thurow HS, Leon PMM, et al. Methotrexate diethyl ester-loaded lipid-core nanocapsules in aqueous solution increased antineoplastic effects in resistant breast cancer cell line. Int J Nanomedicine. 2014;9(1):1583–91.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Bazban-Shotorbani S, Hasani-Sadrabadi MM, Karkhaneh A, Serpooshan V, Jacob KI, Moshaverinia A, et al. Revisiting structure-property relationship of pH-responsive polymers for drug delivery applications. J Control Release. 2017;253:46–63.PubMedGoogle Scholar
  10. 10.
    Sáez-Fernández E, Ruiz M, Arias J. Drug delivery systems based on poly (ε-caprolactone ) for cancer treatment. ARS Pharm. 2009;50(2):83–96.Google Scholar
  11. 11.
    Xiao Y, Yuan M, Zhang J, Yan J, Lang M. Functional poly(ε-caprolactone) based materials: preparation, self-assembly and application in drug delivery. Curr Top Med Chem. 2014;14(6):781–818.PubMedGoogle Scholar
  12. 12.
    Chawla JS, Amiji MM. Biodegradable poly(ε-caprolactone) nanoparticles for tumor-targeted delivery of tamoxifen. Int J Pharm. 2002;249(1–2):127–38.PubMedGoogle Scholar
  13. 13.
    Kabanov AV, Batrakova EV, Alakhov VY. Pluronic block copolymers for overcoming drug resistance in cancer. Adv Drug Deliv Rev. 2002;54(5):759–79.PubMedGoogle Scholar
  14. 14.
    Batrakova EV, Kabanov AV. Pluronic block copolymers: evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J Control Release. 2008;130(2):98–106.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Nogueira DR, Mitjans M, Infante MR, Vinardell MP. The role of counterions in the membrane-disruptive properties of pH-sensitive lysine-based surfactants. Acta Biomater. 2011;7(7):2846–56.PubMedGoogle Scholar
  16. 16.
    Nogueira DR, Mitjans M, Infante MR, Vinardell MP. Comparative sensitivity of tumor and non-tumor cell lines as a reliable approach for in vitro cytotoxicity screening of lysine-based surfactants with potential pharmaceutical applications. Int J Pharm. 2011;420(1):51–8.PubMedGoogle Scholar
  17. 17.
    Nogueira DR, Tavano L, Mitjans M, Pérez L, Infante MR, Vinardell MP. In vitro antitumor activity of methotrexate via pH-sensitive chitosan nanoparticles. Biomaterials. 2013;34(11):2758–72.PubMedGoogle Scholar
  18. 18.
    Vives MA, Infante MR, Garcia E, Selve C, Maugras M, Vinardell MP. Erythrocyte hemolysis and shape changes induced by new lysine-derivate surfactants. Chem Biol Interact. 1999;118(1):1–18.PubMedGoogle Scholar
  19. 19.
    Sánchez L, Mitjans M, Infante MR, García MT, Manresa MA, Vinardell MP. The biological properties of lysine-derived surfactants. Amino Acids. 2007;32(1):133–6.PubMedGoogle Scholar
  20. 20.
    Chung N-O, Lee MK, Lee J. Mechanism of freeze-drying drug nanosuspensions. Int J Pharm. 2012;437(1–2):42–50.PubMedGoogle Scholar
  21. 21.
    Peppas NA, Sahlin JJ. A simple equation for the description of solute release. III. Coupling of diffusion and relaxation. Int J Pharm. 1989;57(2):169–72.Google Scholar
  22. 22.
    Scheeren LE, Nogueira DR, Macedo LB, Vinardell MP, Mitjans M, Infante MR, et al. PEGylated and poloxamer-modified chitosan nanoparticles incorporating a lysine-based surfactant for pH-triggered doxorubicin release. Colloids Surf B Biointerf. 2016;138:117–27.Google Scholar
  23. 23.
    Ritger PL, Peppas NA. A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J Control Release. 1987;5(1):23–36.Google Scholar
  24. 24.
    Nogueira DR, del Carmen MM, Mitjans M, Pérez L, Ramos D, de Lapuente J, et al. Lysine-based surfactants in nanovesicle formulations: the role of cationic charge position and hydrophobicity in in vitro cytotoxicity and intracellular delivery. Nanotoxicology. 2014;8(4):404–21.PubMedGoogle Scholar
  25. 25.
    Ritger PL, Peppas NA. A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J Control Release. 1987;5(1):37–42.Google Scholar
  26. 26.
    Kuznetsova NR, Sevrin C, Lespineux D, Bovin NV, Vodovozova EL, Mészáros T, et al. Hemocompatibility of liposomes loaded with lipophilic prodrugs of methotrexate and melphalan in the lipid bilayer. J Control Release. 2012;160(2):394–400.PubMedGoogle Scholar
  27. 27.
    Liu J, Huang Y, Kumar A, Tan A, Jin S, Mozhi A, et al. pH-Sensitive nano-systems for drug delivery in cancer therapy. Biotechnol Adv. 2014;32(4):693–710.PubMedGoogle Scholar
  28. 28.
    Fessi H, Devissaguet J-P, Puisieux F, Thies C. Procédé de préparation de systèmes coiloidaux dispersibles d’une substance, sous forme du nanoparticules. French patent; 0275796 A1, 1988. p. 988.Google Scholar
  29. 29.
    Chen AZ, Wang GY, Wang SB, Li L, Liu YG, Zhao C. Formation of methotrexate-PLLA-PEG-PLLA composite microspheres by microencapsulation through a process of suspension-enhanced dispersion by supercritical CO2. Int J Nanomedicine. 2012;7:3013–22.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Chen AZ, Li L, Wang SB, Zhao C, Liu YG, Wang GY, et al. Nanonization of methotrexate by solution-enhanced dispersion by supercritical CO 2. J Supercrit Fluids. 2012;67:7–13.Google Scholar
  31. 31.
    Souto EB, Severino P, Santana MHA. Preparação de nanopartículas poliméricas a partir de polímeros pré-formados: parte II. Polímeros. 2012;22(1):101–6.Google Scholar
  32. 32.
    Govender T, Stolnik S, Garnett MC, Illum L, Davis SS. PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug. J Control Release. 1999;57(2):171–85.PubMedGoogle Scholar
  33. 33.
    Yan F, Zhang C, Zheng Y, Mei L, Tang L, Song C, et al. The effect of poloxamer 188 on nanoparticle morphology, size, cancer cell uptake, and cytotoxicity. Nanomed Nanotechnol Biol Med. 2010;6(1):170–8.Google Scholar
  34. 34.
    Berg JM, Romoser A, Banerjee N, Zebda R, Sayes CM. The relationship between pH and zeta potential of ~ 30 nm metal oxide nanoparticle suspensions relevant to in vitro toxicological evaluations. Nanotoxicology. 2009;3(4):276–83.Google Scholar
  35. 35.
    Bhattacharjee S. DLS and zeta potential - what they are and what they are not? J Control Release. 2016;235:337–51.PubMedGoogle Scholar
  36. 36.
    Boechat AL, de Oliveira CP, Tarragô AM, da Costa AG, Malheiro A, Guterres SS, et al. Methotrexate-loaded lipid-core nanocapsules are highly effective in the control of inflammation in synovial cells and a chronic arthritis model. Int J Nanomedicine. 2015;10:6603–14.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Oliveira CP, Venturini CG, Donida B, Poletto FS, Guterres SS, Pohlmann AR. An algorithm to determine the mechanism of drug distribution in lipid-core nanocapsule formulations. Soft Matter. 2013;9(4):1141–50.Google Scholar
  38. 38.
    Fonte P, Reis S, Sarmento B. Facts and evidences on the lyophilization of polymeric nanoparticles for drug delivery. J Control Release. 2016;225:75–86.PubMedGoogle Scholar
  39. 39.
    Pinto Reis C, Neufeld RJ, Ribeiro AJ, Veiga F. Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomed Nanotechnol Biol Med. 2006;2(1):8–21.Google Scholar
  40. 40.
    Morabito K, Shapley NC, Steeley KG, Tripathi A. Review of sunscreen and the emergence of non-conventional absorbers and their applications in ultraviolet protection. Int J Cosmet Sci. 2011;33(5):385–90.PubMedGoogle Scholar
  41. 41.
    Dash TK, Konkimalla VB. Poly-є-caprolactone based formulations for drug delivery and tissue engineering: a review. J Control Release. 2012;158(1):15–33.PubMedGoogle Scholar
  42. 42.
    Glantz MJ, Cole BF, Recht L, Akerley W, Mills P, Saris S, et al. High-dose intravenous methotrexate for patients with nonleukemic leptomeningeal cancer: is intrathecal chemotherapy necessary? J Clin Oncol. 1998;16(4):1561–7.PubMedGoogle Scholar
  43. 43.
    Nogueira DR, Scheeren LE, Macedo LB, Marcolino AIP, Pilar Vinardell M, Mitjans M, et al. Inclusion of a pH-responsive amino acid-based amphiphile in methotrexate-loaded chitosan nanoparticles as a delivery strategy in cancer therapy. Amino Acids. 2016;48(1):157–68.PubMedGoogle Scholar
  44. 44.
    Sohaebuddin SK, Thevenot PT, Baker D, Eaton JW, Tang L. Nanomaterial cytotoxicity is composition, size, and cell type dependent. Part Fibre Toxicol. 2010;7(1):22.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Tavano L, Muzzalupo R, Mauro L, Pellegrino M, Andò S, Picci N. Transferrin-conjugated pluronic niosomes as a new drug delivery system for anticancer therapy. Langmuir. 2013;29(41):12638–46.PubMedGoogle Scholar
  46. 46.
    Minaei A, Sabzichi M, Ramezani F, Hamishehkar H, Samadi N. Co-delivery with nano-quercetin enhances doxorubicin-mediated cytotoxicity against MCF-7 cells. Mol Biol Rep. 2016;43(2):99–105.PubMedGoogle Scholar
  47. 47.
    Hartung T. Food for thought ... on alternative methods for chemical safety testing. ALTEX. 2010;27(1):3–14.PubMedGoogle Scholar
  48. 48.
    Genestier L, Paillot R, Quemeneur L, Izeradjene K, Revillard J-P. Mechanisms of action of methotrexate. Immunopharmacology. 2000;47(2–3):247–57.PubMedGoogle Scholar
  49. 49.
    Valério A, Conti DS, Araújo PHH, Sayer C, da Rocha SRP. Synthesis of PEG-PCL-based polyurethane nanoparticles by miniemulsion polymerization. Colloids Surf B Biointerf. 2015;135:35–41.Google Scholar
  50. 50.
    Zhao J, Gou M, Dai M, Li X, Cao M, Huang M, et al. Preparation, characterization, and in vitro cytotoxicity study of cationic PCL-pluronic-PCL (PCFC) nanoparticles for gene delivery. J Biomed Mater Res A. 2009;90(2):506–13.PubMedGoogle Scholar
  51. 51.
    Surnar B, Sharma K, Jayakannan M. Core–shell polymer nanoparticles for prevention of GSH drug detoxification and cisplatin delivery to breast cancer cells. Nanoscale. 2015;7(42):17964–79.PubMedGoogle Scholar
  52. 52.
    Mendes LP, Delgado JMF, Costa ADA, Vieira MS, Benfica PL, Lima EM, et al. Biodegradable nanoparticles designed for drug delivery: the number of nanoparticles impacts on cytotoxicity. Toxicol in Vitro. 2015;29(6):1268–74.PubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2019

Authors and Affiliations

  • Letícia Bueno Macedo
    • 1
    • 2
  • Daniele Rubert Nogueira-Librelotto
    • 1
    • 2
  • Josiele de Vargas
    • 1
  • Laís Engroff Scheeren
    • 1
    • 2
  • María Pilar Vinardell
    • 3
  • Clarice Madalena Bueno Rolim
    • 1
    • 2
    Email author
  1. 1.Department of Industrial PharmacyUniversidade Federal de Santa MariaSanta MariaBrazil
  2. 2.PostGraduate Program in Pharmaceutical SciencesUniversidade Federal de Santa MariaSanta MariaBrazil
  3. 3.Department of Biochemistry and Physiology, Faculty of Pharmacy and Food ScienceUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations