Investigation of the Compatibility of the Skin PAMPA Model with Topical Formulation and Acceptor Media Additives Using Different Assay Setups
Abstract
The Skin Parallel Artificial Membrane Permeability Assay (PAMPA) is a 96-well plate–based skin model with an artificial membrane containing free fatty acid, cholesterol, and synthetic ceramide analogs to mimic the stratum corneum (SC) barrier. The current study evaluates the compatibility of lipophilic solvents/penetration enhancer, topical emulsions containing different emulsifier systems, and organic acceptor media additives with the artificial membrane of the assay. Additionally, different assay setups (standard setup: donor in bottom plate versus modified setup: donor in top plate) were compared. Methylparaben (MP), ethylparaben (EP), and propylparaben (PP) were used as model permeants and internal standards for proper assay execution. The permeation order of the parabens (MP > EP > PP) remained the same with different lipophilic solvents, and the ranking of lipophilic solvents was comparable under standard and modified conditions (isopropyl myristate, IPM > dimethyl isosorbide, DMI ≥ propylene glycol, PG > diisopropyl adipate, DIPA). Pre-incubation of the Skin PAMPA plates with IPM, DIPA, and DMI, as well as with formulations that contain non-ionic emulsifiers, and acceptor solutions containing DMSO or EtOH (≤ 50%) for 4 h did not increase the percentage of permeated parabens in the main experiment, suggesting that those compounds do not make the artificial membrane more permeable. High-resolution mass spectrometry confirmed that acceptor solutions with ≤ 50% DMSO or EtOH do not extract stearic acid, cholesterol, and certramides at standard assay conditions. Hence, if certain constraints are considered, the Skin PAMPA model can be used as a pre-screening tool for topical formulation selection.
KEY WORDS
skin PAMPA artificial membrane penetration enhancer emulsifier parabensAbbreviations
- API
Active pharmaceutical ingredient
- DIPA
Diisopropyl adipate
- DMI
Dimethyl isosorbide
- DMSO
Dimethyl sulfoxide
- EtOH
Ethanol
- IPM
Isopropyl myristate
- MP, EP & PP
Methyl-, ethyl- & propylparaben respectively
- PAMPA
Parallel Artificial Membrane Permeability Assay
- PG
Propylene glycol
- SC
Stratum corneum
- UPLC
Ultra-performance liquid chromatography
Notes
Acknowledgements
The authors thank Elvira Balaguer, Almirall SA, Sant Feliu, Spain, for technical support.
References
- 1.Franz TJ. Percutaneous absorption on the relevance of in vitro data. J Invest Dermatol. 1975;64(3):190–5.CrossRefGoogle Scholar
- 2.Siewert M, Dressman J, Brown CK, Shah VP. FIP/AAPS guidelines to dissolution/in vitro release testing of novel/special dosage forms. AAPS PharmSciTech. 2003;4(1):E7. https://doi.org/10.1208/pt040107.CrossRefPubMedGoogle Scholar
- 3.Mujica Ascencio S, Choe C, Meinke MC, Muller RH, Maksimov GV, Wigger-Alberti W, et al. Confocal Raman microscopy and multivariate statistical analysis for determination of different penetration abilities of caffeine and propylene glycol applied simultaneously in a mixture on porcine skin ex vivo. Eur J Pharm Biopharm. 2016;104:51–8. https://doi.org/10.1016/j.ejpb.2016.04.018.CrossRefPubMedGoogle Scholar
- 4.Eberlin LS, Mulcahy JV, Tzabazis A, Zhang J, Liu H, Logan MM, et al. Visualizing dermal permeation of sodium channel modulators by mass spectrometric imaging. JACS. 2014;136(17):6401–5. https://doi.org/10.1021/ja501635u.CrossRefGoogle Scholar
- 5.Herbig ME, Houdek P, Gorissen S, Zorn-Kruppa M, Wladykowski E, Volksdorf T, et al. A custom tailored model to investigate skin penetration in porcine skin and its comparison with human skin. Eur J Pharm Biopharm. 2015;95(Pt A):99–109. https://doi.org/10.1016/j.ejpb.2015.03.030.CrossRefPubMedGoogle Scholar
- 6.Ng SF, Rouse JJ, Sanderson FD, Meidan V, Eccleston GM. Validation of a static Franz diffusion cell system for in vitro permeation studies. AAPS PharmSciTech. 2010;11(3):1432–41. https://doi.org/10.1208/s12249-010-9522-9.CrossRefPubMedPubMedCentralGoogle Scholar
- 7.Sinko B, Garrigues TM, Balogh GT, Nagy ZK, Tsinman O, Avdeef A, et al. Skin-PAMPA: a new method for fast prediction of skin penetration. Eur J Pharm Sci. 2012;45(5):698–707. https://doi.org/10.1016/j.ejps.2012.01.011.CrossRefPubMedGoogle Scholar
- 8.Kansy M, Senner F, Gubernator K. Physicochemical high throughput screening: parallel artificial membrane permeation assay in the description of passive absorption processes. J Med Chem. 1998;41(7):1007–10. https://doi.org/10.1021/jm970530e.CrossRefPubMedGoogle Scholar
- 9.Avdeef A. The rise of PAMPA. Expert Opin Drug Metab Toxicol. 2005;1(2):325–42. https://doi.org/10.1517/17425255.1.2.325.CrossRefPubMedGoogle Scholar
- 10.Ottaviani G, Martel S, Carrupt PA. Parallel artificial membrane permeability assay: a new membrane for the fast prediction of passive human skin permeability. J Med Chem. 2006;49(13):3948–54. https://doi.org/10.1021/jm060230+.
- 11.Sinko B, Kokosi J, Avdeef A, Takacs-Novak K. A PAMPA study of the permeability-enhancing effect of new ceramide analogues. Chem Biodivers. 2009;6(11):1867–74. https://doi.org/10.1002/cbdv.200900149.CrossRefPubMedGoogle Scholar
- 12.Balazs B, Vizseralek G, Berko S, Budai-Szucs M, Kelemen A, Sinko B, et al. Investigation of the efficacy of transdermal penetration enhancers through the use of human skin and a skin mimic artificial membrane. J Pharm Sci. 2016;105(3):1134–40. https://doi.org/10.1016/S0022-3549(15)00172-0.CrossRefPubMedGoogle Scholar
- 13.Vizseralek G, Berko S, Toth G, Balogh R, Budai-Szucs M, Csanyi E, et al. Permeability test for transdermal and local therapeutic patches using Skin PAMPA method. Eur J Pharm Sci. 2015;76:165–72. https://doi.org/10.1016/j.ejps.2015.05.004.CrossRefPubMedGoogle Scholar
- 14.Clough M, Richardson N, Romanski F, Langley N, Tsinman K, Tsinman O, editors. Assessment of transdermal penetration enhancement by topical pharmaceutical excipients using Skin PAMPA Method (T2267). AAPS Annual Meeting and Exposition 2013; San Antonio.Google Scholar
- 15.Luo L, Patel A, Sinko B, Bell M, Wibawa J, Hadgraft J, et al. A comparative study of the in vitro permeation of ibuprofen in mammalian skin, the PAMPA model and silicone membrane. Int J Pharm. 2016;505(1–2):14–9. https://doi.org/10.1016/j.ijpharm.2016.03.043.
- 16.van Smeden J, Hoppel L, van der Heijden R, Hankemeier T, Vreeken RJ, Bouwstra JA. LC/MS analysis of stratum corneum lipids: ceramide profiling and discovery. J Lipid Res. 2011;52(6):1211–21. https://doi.org/10.1194/jlr.M014456.CrossRefPubMedPubMedCentralGoogle Scholar
- 17.Prausnitz MR, Elias PM, Franz TJ, Schmuth M, Tsai J-C, Menon GK, et al. Skin barrier and transdermal drug delivery. In: Bolognia J, Jorizzo J, Schaffer J, editors. Dermatology, 3 ed: Elsevier Health Sciences; 2012.Google Scholar
- 18.Pedersen S, Marra F, Nicoli S, Santi P. In vitro skin permeation and retention of parabens from cosmetic formulations. Int J Cosmetic Sci. 2007;29(5):361–7. https://doi.org/10.1111/j.1468-2494.2007.00388.x.CrossRefGoogle Scholar
- 19.Lane ME. Skin penetration enhancers. Int J Pharm. 2013;447(1–2):12–21. https://doi.org/10.1016/j.ijpharm.2013.02.040.CrossRefPubMedGoogle Scholar
- 20.Brinkmann I, Muller-Goymann CC. Role of isopropyl myristate, isopropyl alcohol and a combination of both in hydrocortisone permeation across the human stratum corneum. Skin Pharmacol Appl Ski Physiol. 2003;16(6):393–404.CrossRefGoogle Scholar
- 21.Takahashi K, Sakano H, Numata N, Kuroda S, Mizuno N. Effect of fatty acid diesters on permeation of anti-inflammatory drugs through rat skin. Drug Dev Ind Pharm. 2002;28(19):1285–94.CrossRefGoogle Scholar
- 22.Remitz A, Reitamo S, Erkko P, Granlund H, Lauerma AI. Tacrolimus ointment improves psoriasis in a microplaque assay. Br J Dermatol. 1999;141(1):103–7.CrossRefGoogle Scholar
- 23.Barry BW, Southwell D, Woodford R. Optimization of bioavailability of topical steroids: penetration enhancers under occlusion. J Investig Dermatol. 1984;82(1):49–52.CrossRefGoogle Scholar
- 24.Russo C, Brickelbank N, Duckett C, Mellor S, Rumbelow S, Clench MR. Quantitative investigation of terbinafine hydrochloride absorption into a living skin equivalent model by MALDI-MSI. Anal Chem. 2018;90(16):10031–8.CrossRefGoogle Scholar
- 25.Williams AC, Barry BW. Penetration enhancers. Adv Drug Deliv Rev. 2004;56(5):603–18.CrossRefGoogle Scholar
- 26.Ghafourian T, Nokhodchi A, Kaialy W. Surfactants as penetration enhancers for dermal and transdermal drug delivery. In: Dragicevic N, Maibach HI, editors. Percutaneous penetration enhancers chemical methods in penetration enhancement: modification of the stratum corneum. Berlin: Springer Berlin Heidelberg; 2015. p. 207–30.CrossRefGoogle Scholar
- 27.Som I, Bhatia K, Yasir M. Status of surfactants as penetration enhancers in transdermal drug delivery. J Pharm Bioallied Sci. 2012;4(1):2–9. https://doi.org/10.4103/0975-7406.92724.