Advertisement

AAPS PharmSciTech

, 20:89 | Cite as

Investigation of the Compatibility of the Skin PAMPA Model with Topical Formulation and Acceptor Media Additives Using Different Assay Setups

  • Melanie KöllmerEmail author
  • Parinaz Mossahebi
  • Elena Sacharow
  • Sascha Gorissen
  • Nicole Gräfe
  • Dirk-Heinrich Evers
  • Michael E. Herbig
Research Article

Abstract

The Skin Parallel Artificial Membrane Permeability Assay (PAMPA) is a 96-well plate–based skin model with an artificial membrane containing free fatty acid, cholesterol, and synthetic ceramide analogs to mimic the stratum corneum (SC) barrier. The current study evaluates the compatibility of lipophilic solvents/penetration enhancer, topical emulsions containing different emulsifier systems, and organic acceptor media additives with the artificial membrane of the assay. Additionally, different assay setups (standard setup: donor in bottom plate versus modified setup: donor in top plate) were compared. Methylparaben (MP), ethylparaben (EP), and propylparaben (PP) were used as model permeants and internal standards for proper assay execution. The permeation order of the parabens (MP > EP > PP) remained the same with different lipophilic solvents, and the ranking of lipophilic solvents was comparable under standard and modified conditions (isopropyl myristate, IPM > dimethyl isosorbide, DMI ≥ propylene glycol, PG > diisopropyl adipate, DIPA). Pre-incubation of the Skin PAMPA plates with IPM, DIPA, and DMI, as well as with formulations that contain non-ionic emulsifiers, and acceptor solutions containing DMSO or EtOH (≤ 50%) for 4 h did not increase the percentage of permeated parabens in the main experiment, suggesting that those compounds do not make the artificial membrane more permeable. High-resolution mass spectrometry confirmed that acceptor solutions with ≤ 50% DMSO or EtOH do not extract stearic acid, cholesterol, and certramides at standard assay conditions. Hence, if certain constraints are considered, the Skin PAMPA model can be used as a pre-screening tool for topical formulation selection.

KEY WORDS

skin PAMPA artificial membrane penetration enhancer emulsifier parabens 

Abbreviations

API

Active pharmaceutical ingredient

DIPA

Diisopropyl adipate

DMI

Dimethyl isosorbide

DMSO

Dimethyl sulfoxide

EtOH

Ethanol

IPM

Isopropyl myristate

MP, EP & PP

Methyl-, ethyl- & propylparaben respectively

PAMPA

Parallel Artificial Membrane Permeability Assay

PG

Propylene glycol

SC

Stratum corneum

UPLC

Ultra-performance liquid chromatography

Notes

Acknowledgements

The authors thank Elvira Balaguer, Almirall SA, Sant Feliu, Spain, for technical support.

References

  1. 1.
    Franz TJ. Percutaneous absorption on the relevance of in vitro data. J Invest Dermatol. 1975;64(3):190–5.CrossRefGoogle Scholar
  2. 2.
    Siewert M, Dressman J, Brown CK, Shah VP. FIP/AAPS guidelines to dissolution/in vitro release testing of novel/special dosage forms. AAPS PharmSciTech. 2003;4(1):E7.  https://doi.org/10.1208/pt040107.CrossRefPubMedGoogle Scholar
  3. 3.
    Mujica Ascencio S, Choe C, Meinke MC, Muller RH, Maksimov GV, Wigger-Alberti W, et al. Confocal Raman microscopy and multivariate statistical analysis for determination of different penetration abilities of caffeine and propylene glycol applied simultaneously in a mixture on porcine skin ex vivo. Eur J Pharm Biopharm. 2016;104:51–8.  https://doi.org/10.1016/j.ejpb.2016.04.018.CrossRefPubMedGoogle Scholar
  4. 4.
    Eberlin LS, Mulcahy JV, Tzabazis A, Zhang J, Liu H, Logan MM, et al. Visualizing dermal permeation of sodium channel modulators by mass spectrometric imaging. JACS. 2014;136(17):6401–5.  https://doi.org/10.1021/ja501635u.CrossRefGoogle Scholar
  5. 5.
    Herbig ME, Houdek P, Gorissen S, Zorn-Kruppa M, Wladykowski E, Volksdorf T, et al. A custom tailored model to investigate skin penetration in porcine skin and its comparison with human skin. Eur J Pharm Biopharm. 2015;95(Pt A):99–109.  https://doi.org/10.1016/j.ejpb.2015.03.030.CrossRefPubMedGoogle Scholar
  6. 6.
    Ng SF, Rouse JJ, Sanderson FD, Meidan V, Eccleston GM. Validation of a static Franz diffusion cell system for in vitro permeation studies. AAPS PharmSciTech. 2010;11(3):1432–41.  https://doi.org/10.1208/s12249-010-9522-9.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Sinko B, Garrigues TM, Balogh GT, Nagy ZK, Tsinman O, Avdeef A, et al. Skin-PAMPA: a new method for fast prediction of skin penetration. Eur J Pharm Sci. 2012;45(5):698–707.  https://doi.org/10.1016/j.ejps.2012.01.011.CrossRefPubMedGoogle Scholar
  8. 8.
    Kansy M, Senner F, Gubernator K. Physicochemical high throughput screening: parallel artificial membrane permeation assay in the description of passive absorption processes. J Med Chem. 1998;41(7):1007–10.  https://doi.org/10.1021/jm970530e.CrossRefPubMedGoogle Scholar
  9. 9.
    Avdeef A. The rise of PAMPA. Expert Opin Drug Metab Toxicol. 2005;1(2):325–42.  https://doi.org/10.1517/17425255.1.2.325.CrossRefPubMedGoogle Scholar
  10. 10.
    Ottaviani G, Martel S, Carrupt PA. Parallel artificial membrane permeability assay: a new membrane for the fast prediction of passive human skin permeability. J Med Chem. 2006;49(13):3948–54.  https://doi.org/10.1021/jm060230+.
  11. 11.
    Sinko B, Kokosi J, Avdeef A, Takacs-Novak K. A PAMPA study of the permeability-enhancing effect of new ceramide analogues. Chem Biodivers. 2009;6(11):1867–74.  https://doi.org/10.1002/cbdv.200900149.CrossRefPubMedGoogle Scholar
  12. 12.
    Balazs B, Vizseralek G, Berko S, Budai-Szucs M, Kelemen A, Sinko B, et al. Investigation of the efficacy of transdermal penetration enhancers through the use of human skin and a skin mimic artificial membrane. J Pharm Sci. 2016;105(3):1134–40.  https://doi.org/10.1016/S0022-3549(15)00172-0.CrossRefPubMedGoogle Scholar
  13. 13.
    Vizseralek G, Berko S, Toth G, Balogh R, Budai-Szucs M, Csanyi E, et al. Permeability test for transdermal and local therapeutic patches using Skin PAMPA method. Eur J Pharm Sci. 2015;76:165–72.  https://doi.org/10.1016/j.ejps.2015.05.004.CrossRefPubMedGoogle Scholar
  14. 14.
    Clough M, Richardson N, Romanski F, Langley N, Tsinman K, Tsinman O, editors. Assessment of transdermal penetration enhancement by topical pharmaceutical excipients using Skin PAMPA Method (T2267). AAPS Annual Meeting and Exposition 2013; San Antonio.Google Scholar
  15. 15.
    Luo L, Patel A, Sinko B, Bell M, Wibawa J, Hadgraft J, et al. A comparative study of the in vitro permeation of ibuprofen in mammalian skin, the PAMPA model and silicone membrane. Int J Pharm. 2016;505(1–2):14–9.  https://doi.org/10.1016/j.ijpharm.2016.03.043.
  16. 16.
    van Smeden J, Hoppel L, van der Heijden R, Hankemeier T, Vreeken RJ, Bouwstra JA. LC/MS analysis of stratum corneum lipids: ceramide profiling and discovery. J Lipid Res. 2011;52(6):1211–21.  https://doi.org/10.1194/jlr.M014456.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Prausnitz MR, Elias PM, Franz TJ, Schmuth M, Tsai J-C, Menon GK, et al. Skin barrier and transdermal drug delivery. In: Bolognia J, Jorizzo J, Schaffer J, editors. Dermatology, 3 ed: Elsevier Health Sciences; 2012.Google Scholar
  18. 18.
    Pedersen S, Marra F, Nicoli S, Santi P. In vitro skin permeation and retention of parabens from cosmetic formulations. Int J Cosmetic Sci. 2007;29(5):361–7.  https://doi.org/10.1111/j.1468-2494.2007.00388.x.CrossRefGoogle Scholar
  19. 19.
    Lane ME. Skin penetration enhancers. Int J Pharm. 2013;447(1–2):12–21.  https://doi.org/10.1016/j.ijpharm.2013.02.040.CrossRefPubMedGoogle Scholar
  20. 20.
    Brinkmann I, Muller-Goymann CC. Role of isopropyl myristate, isopropyl alcohol and a combination of both in hydrocortisone permeation across the human stratum corneum. Skin Pharmacol Appl Ski Physiol. 2003;16(6):393–404.CrossRefGoogle Scholar
  21. 21.
    Takahashi K, Sakano H, Numata N, Kuroda S, Mizuno N. Effect of fatty acid diesters on permeation of anti-inflammatory drugs through rat skin. Drug Dev Ind Pharm. 2002;28(19):1285–94.CrossRefGoogle Scholar
  22. 22.
    Remitz A, Reitamo S, Erkko P, Granlund H, Lauerma AI. Tacrolimus ointment improves psoriasis in a microplaque assay. Br J Dermatol. 1999;141(1):103–7.CrossRefGoogle Scholar
  23. 23.
    Barry BW, Southwell D, Woodford R. Optimization of bioavailability of topical steroids: penetration enhancers under occlusion. J Investig Dermatol. 1984;82(1):49–52.CrossRefGoogle Scholar
  24. 24.
    Russo C, Brickelbank N, Duckett C, Mellor S, Rumbelow S, Clench MR. Quantitative investigation of terbinafine hydrochloride absorption into a living skin equivalent model by MALDI-MSI. Anal Chem. 2018;90(16):10031–8.CrossRefGoogle Scholar
  25. 25.
    Williams AC, Barry BW. Penetration enhancers. Adv Drug Deliv Rev. 2004;56(5):603–18.CrossRefGoogle Scholar
  26. 26.
    Ghafourian T, Nokhodchi A, Kaialy W. Surfactants as penetration enhancers for dermal and transdermal drug delivery. In: Dragicevic N, Maibach HI, editors. Percutaneous penetration enhancers chemical methods in penetration enhancement: modification of the stratum corneum. Berlin: Springer Berlin Heidelberg; 2015. p. 207–30.CrossRefGoogle Scholar
  27. 27.
    Som I, Bhatia K, Yasir M. Status of surfactants as penetration enhancers in transdermal drug delivery. J Pharm Bioallied Sci. 2012;4(1):2–9.  https://doi.org/10.4103/0975-7406.92724.

Copyright information

© American Association of Pharmaceutical Scientists 2019

Authors and Affiliations

  • Melanie Köllmer
    • 1
    • 2
    Email author
  • Parinaz Mossahebi
    • 1
  • Elena Sacharow
    • 1
  • Sascha Gorissen
    • 1
    • 2
  • Nicole Gräfe
    • 1
  • Dirk-Heinrich Evers
    • 1
    • 2
  • Michael E. Herbig
    • 1
    • 2
  1. 1.Almirall Hermal, R&D DermatologyReinbekGermany
  2. 2.RaDes GmbHHamburgGermany

Personalised recommendations