Advertisement

AAPS PharmSciTech

, 20:67 | Cite as

Promising Chitosan-Coated Alginate-Tween 80 Nanoparticles as Rifampicin Coadministered Ascorbic Acid Delivery Carrier Against Mycobacterium tuberculosis

  • Ivana R. Scolari
  • Paulina L. Páez
  • Mariela E. Sánchez-Borzone
  • Gladys E. GraneroEmail author
Research Article

Abstract

The aim of this study was to design a nanocarrier system for inhalation delivery of rifampicin (RIF) in combination with ascorbic acid (ASC), namely constituted of sodium alginate coated with chitosan and Tween 80 (RIF/ASC NPs) as a platform for the treatment of pulmonary tuberculosis infection. A Box-Behnken experimental design and response surface methodology (RSM) were applied to elucidate and evaluate the effects of several factors on the nanoparticle properties. On the other hand, it was found that RIF/ASC NPs were less cytotoxic than the free RIF, showing a significantly improved activity against nine clinical strains of Mycobacterium tuberculosis (M. tb) in comparison with the free drug. RIF/ASC NPs had an average particle size of 324.0 ± 40.7 nm, a polydispersity index of 0.226 ± 0.030, and a zeta potential of − 28.52 ± 0.47 mV and the surface was hydrophilic. The addition of sucrose (1% w/v) to the nanosuspension resulted in the formation of a solid pellet easily redispersible after lyophilization. RIF/ASC NPs were found to be stable at different physiological pH values. In summary, findings of this work highlight the potential of the RIF/ASC NP-based formulation development herein to deliver RIF in combination with ASC through pulmonary route by exploring a non-invasive route of administration of this antibiotic, increasing the local drug concentrations in lung tissues, the primary infection site, as well as reducing the risk of systemic toxicity and hence improving the patient compliance.

KEY WORDS

rifampicin ascorbic acid sodium alginate chitosan nanoparticles tuberculosis 

Notes

Acknowledgments

The authors acknowledge the ConsejoNacional de InvestigacionesCientíficas y Técnicas (CONICET), the Secretaría de Ciencia y Técnica de la Universidad Nacional de Córdoba (SECyT-UNC), and the Fondopara la InvestigaciónCientífica y Tecnológica (FONCYT) for providing the support and the facilities for this study and to the Bioq. Norberto Símboli, Servicio de Micobacterias, Instituto Nacional de Enfermedades Infecciosas “DR. CARLOS G. MALBRÁN.”

Supplementary material

12249_2018_1278_MOESM1_ESM.docx (144 kb)
ESM 1 (DOCX 143 kb)

References

  1. 1.
    Abed N, Couvreur P. Nanocarriers for antibiotics: a promising solution to treat intracellular bacterial infections. Int J Antimicrob Agents. 2014;43(6):485–96.CrossRefGoogle Scholar
  2. 2.
    Laxminarayan R, Duse A, Wattal C, Zaidi AKM, Wertheim HFL, Sumpradit N, et al. Antibiotic resistance—the need for global solutions. Lancet Infect Dis. 2013;13(12):1057–98.CrossRefGoogle Scholar
  3. 3.
    De Keijzer J, Mulder A, De Beer J, De Ru AH, Van Veelen PA, Van Soolingen D. Mechanisms of phenotypic rifampicin tolerance in Mycobacterium tuberculosis Beijing genotype strain B0/W148 revealed by proteomics. J Proteome Res. 2016;15(4):1194–204.CrossRefGoogle Scholar
  4. 4.
    Blasi P, Schoubben A, Giovagnoli S, Rossi C, Ricci M. Fighting tuberculosis: old drugs, new formulations. Expert Opin Drug Deliv. 2009;6(9):977–93.CrossRefGoogle Scholar
  5. 5.
    Karimi M, Mirshekari H, Moosavi Basri SM, Bahrami S, Moghoofei M, Hamblin MR. Bacteriophages and phage-inspired nanocarriers for targeted delivery of therapeutic cargos. Adv Drug Deliv Rev. 2016;106:45–62.CrossRefGoogle Scholar
  6. 6.
    Deacon J, Abdelghany SM, Quinn DJ, Schmid D, Megaw J, Donnelly RF, et al. Antimicrobial efficacy of tobramycin polymeric nanoparticles for Pseudomonas aeruginosa infections in cystic fibrosis: formulation, characterisation and functionalisation with dornase alfa (DNase). J Control Release. 2015;198:55–61.CrossRefGoogle Scholar
  7. 7.
    Dey A, Kamat A, Nayak S, Danino D, Kesselman E, Dandekar P, et al. Role of proton balance in formation of self-assembled chitosan nanoparticles. Colloids Surfaces B Biointerfaces. 2018;166:127–34.CrossRefGoogle Scholar
  8. 8.
    Mirtič J, Ilaš J, Kristl J. Influence of different classes of crosslinkers on alginate polyelectrolyte nanoparticle formation, thermodynamics and characteristics. Carbohydr Polym. 2018;181(2017):93–102.CrossRefGoogle Scholar
  9. 9.
    George M, Abraham TE. Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan—a review. J Control Release. 2006;114(1):1–14.CrossRefGoogle Scholar
  10. 10.
    Cook MT, Tzortzis G, Charalampopoulos D, Khutoryanskiy VV. Production and evaluation of dry alginate-chitosan microcapsules as an enteric delivery vehicle for probiotic bacteria. Biomacromolecules. 2011;12(7):2834–40.CrossRefGoogle Scholar
  11. 11.
    Lucinda-Silva RM, Salgado HRN, Evangelista RC. Alginate-chitosan systems: in vitro controlled release of triamcinolone and in vivo gastrointestinal transit. Carbohydr Polym. 2010;81(2):260–8.CrossRefGoogle Scholar
  12. 12.
    Paques JP, Van Der Linden E, Van Rijn CJM, Sagis LMC. Preparation methods of alginate nanoparticles. Adv Colloid Interface Sci. 2014;209:163–71. Available from:.  https://doi.org/10.1016/j.cis.2014.03.009.CrossRefPubMedGoogle Scholar
  13. 13.
    Romero MR, Wolfel A, Igarzabal CIA. Smart valve: polymer actuator to moisture soil control. Sensors Actuators B Chem. 2016;234:53–62.CrossRefGoogle Scholar
  14. 14.
    Caleffi-Ferracioli KR, Maltempe FG, Siqueira VLD, Cardoso RF. Fast detection of drug interaction in Mycobacterium tuberculosis by a checkerboard resazurin method. Tuberculosis. 2013;93(6):660–3.CrossRefGoogle Scholar
  15. 15.
    Sarmento B, Martins S, Ribeiro A, Veiga F, Neufeld R, Ferreira D. Development and comparison of different nanoparticulate polyelectrolyte complexes as insulin carriers. Int J Pept Res Ther. 2006;12(2):131–8.CrossRefGoogle Scholar
  16. 16.
    Zimet P, Mombrú ÁW, Faccio R, Brugnini G, Miraballes I, Rufo C, et al. Optimization and characterization of nisin-loaded alginate-chitosan nanoparticles with antimicrobial activity in lean beef. LWT - Food Sci Technol. 2018;91(December 2017):107–16. Available from.  https://doi.org/10.1016/j.lwt.2018.01.015.CrossRefGoogle Scholar
  17. 17.
    Asadpour-Zeynali K, Mollarasouli F. Novel electrochemical biosensor based on PVP capped CoFe2O4@CdSe core-shell nanoparticles modified electrode for ultra-trace level determination of rifampicin by square wave adsorptive stripping voltammetry. Biosens Bioelectron. 2017;92:509–16. Available from.  https://doi.org/10.1016/j.bios.2016.10.071.CrossRefPubMedGoogle Scholar
  18. 18.
    Garbuzenko OB, Winkler J, Tomassone MS, Minko T. Biodegradable Janus nanoparticles for local pulmonary delivery of hydrophilic and hydrophobic molecules to the lungs. Langmuir. 2014;30(43):12941–9.CrossRefGoogle Scholar
  19. 19.
    Witten J, Samad T, Ribbeck K. Selective permeability of mucus barriers. Curr Opin Biotechnol. 2018;52:124–33. Available from.  https://doi.org/10.1016/j.copbio.2018.03.010.CrossRefPubMedGoogle Scholar
  20. 20.
    Lieleg O, Vladescu I, Ribbeck K. Characterization of particle translocation through mucin hydrogels. Biophys J. 2010;98(9):1782–9. Available from:.  https://doi.org/10.1016/j.bpj.2010.01.012.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Popov A, Schopf L, Bourassa J, Chen H. Enhanced pulmonary delivery of fluticasone propionate in rodents by mucus-penetrating nanoparticles. Int J Pharm. 2016;502(1–2):188–97. Available from:.  https://doi.org/10.1016/j.ijpharm.2016.02.031.CrossRefPubMedGoogle Scholar
  22. 22.
    Ruge CA, Schaefer UF, Herrmann J, Kirch J, Cañadas O, Echaide M, et al. The interplay of lung surfactant proteins and lipids assimilates the macrophage clearance of nanoparticles. PLoS One. 2012;7(7):e40775.Google Scholar
  23. 23.
    Hu G, Jiao B, Shi X, Valle RP, Fan Q, Zuo YY. Physicochemical properties of nanoparticles regulate translocation across pulmonary surfactant monolayer and formation of lipoprotein corona. ACS Nano. 2013;7(12):10525–33.CrossRefGoogle Scholar
  24. 24.
    Beck-Broichsitter M. Biophysical activity of impaired lung surfactant upon exposure to polymer nanoparticles. Langmuir. 2016;32(40):10422–9.CrossRefGoogle Scholar
  25. 25.
    Müller J, Bauer KN, Prozeller D, Simon J, Mailänder V, Wurm FR, et al. Coating nanoparticles with tunable surfactants facilitates control over the protein corona. Biomaterials. 2017;115:1–8. Available from:.  https://doi.org/10.1016/j.biomaterials.2016.11.015.CrossRefPubMedGoogle Scholar
  26. 26.
    Beck-Broichsitter M, Bohr A, Ruge CA. Poloxamer-decorated polymer nanoparticles for lung surfactant compatibility. Mol Pharm. 2017;14(10):3464–72.CrossRefGoogle Scholar
  27. 27.
    Li X, Qin Y, Liu C, Jiang S, Xiong L, Sun Q. Size-controlled starch nanoparticles prepared by self-assembly with different green surfactant: the effect of electrostatic repulsion or steric hindrance. Food Chem. 2016;199:356–63. Available from:.  https://doi.org/10.1016/j.foodchem.2015.12.037.CrossRefPubMedGoogle Scholar
  28. 28.
    Bhunchu S, Rojsitthisak P, Rojsitthisak P. Effects of preparation parameters on the characteristics of chitosan-alginate nanoparticles containing curcumin diethyl disuccinate. J Drug Deliv Sci Technol. 2015;28:64–72.CrossRefGoogle Scholar
  29. 29.
    Seju U, Kumar A, Sawant KK. Development and evaluation of olanzapine-loaded PLGA nanoparticles for nose-to-brain delivery: in vitro and in vivo studies. Acta Biomater. 2011;7(12):4169–76. Available from:.  https://doi.org/10.1016/j.actbio.2011.07.025.CrossRefPubMedGoogle Scholar
  30. 30.
    Cheow WS, Ng MLL, Kho K, Hadinoto K. Spray-freeze-drying production of thermally sensitive polymeric nanoparticle aggregates for inhaled drug delivery: effect of freeze-drying adjuvants. Int J Pharm. 2011;404(1–2):289–300. Available from:.  https://doi.org/10.1016/j.ijpharm.2010.11.021.CrossRefPubMedGoogle Scholar
  31. 31.
    Abbas Y, Azzazy HME, Tammam S, Lamprecht A, Ali ME, Schmidt A, et al. Development of an inhalable, stimuli-responsive particulate system for delivery to deep lung tissue [Internet]. Vol. 146, Colloids and Surfaces B: Biointerfaces. Elsevier B.V.; 2016. 19–30 p. Available from:  https://doi.org/10.1016/j.colsurfb.2016.05.031
  32. 32.
    Harikrishnan AR, Dhar P, Agnihotri PK, Gedupudi S, Das SK. Wettability of complex fluids and surfactant capped nanoparticle-induced quasi-universal wetting behavior. J Phys Chem B. 2017;121(24):6081–95.CrossRefGoogle Scholar
  33. 33.
    Kerwin BA. Polysorbates 20 and 80 used in the formulation of protein biotherapeutics: structure and degradation pathways. Int J Drug Dev Res. 2008;97(8):2924–35.Google Scholar
  34. 34.
    Picone CSF, Cunha RL. Formation of nano and microstructures by polysorbate-chitosan association. Colloids Surfaces A Physicochem Eng Asp. 2013;418:29–38.CrossRefGoogle Scholar
  35. 35.
    Bergo BPVA, Carvalho RA, Sobra PJA, Santos RMC dos, Silva FBR da, Prison JM, et al. Physical properties of edible films based on cassava starch as affected by the plasticizer concentration and science. Packag Technol Sci. 2008;21:85–9.Google Scholar
  36. 36.
    Hu K, McClements DJ. Fabrication of biopolymer nanoparticles by antisolvent precipitation and electrostatic deposition: zein-alginate core/shell nanoparticles. Food Hydrocoll. 2015;44:101–8. Available from:.  https://doi.org/10.1016/j.foodhyd.2014.09.015.CrossRefGoogle Scholar
  37. 37.
    Costa EM, Silva S, Vicente S, Neto C, Castro PM, Veiga M, et al. Chitosan nanoparticles as alternative anti-staphylococci agents: bactericidal, antibiofilm and antiadhesive effects. Mater Sci Eng C. 2017;79:221–6.CrossRefGoogle Scholar
  38. 38.
    Hillgren A, Lindgren J, Aldén M. Protection mechanism of Tween 80 during freeze-thawing of a model protein, LDH. Int J Pharm. 2002;237(1–2):57–69.CrossRefGoogle Scholar
  39. 39.
    Peng B, Han X, Liu H, Berry RC, Tam KC. Interactions between surfactants and polymer-grafted nanocrystalline cellulose. Colloids Surfaces A Physicochem Eng Asp. 2013;421:142–9.CrossRefGoogle Scholar
  40. 40.
    Guo N, Hou B, Wang N, Xiao Y, Huang J, Guo Y, et al. In situ monitoring and modeling of the solution-mediated polymorphic transformation of rifampicin: from form II to form I. J Pharm Sci. 2018;107(1):344–52.CrossRefGoogle Scholar
  41. 41.
    Fischer H, Widdicombe JH. Mechanisms of acid and base secretion by airway epithelium. J Membr Biol. 2006;211(3):139–50.CrossRefGoogle Scholar
  42. 42.
    Christensen KA, Myers JT, Swanson JA. pH-dependent regulation of lysosomal calcium in macrophages Kenneth. J Cell Sci. 2002;115:599–607.Google Scholar
  43. 43.
    Scherließ R. The MTT assay as tool to evaluate and compare excipient toxicity in vitro on respiratory epithelial cells. Int J Pharm. 2011;411(1–2):98–105.CrossRefGoogle Scholar
  44. 44.
    International Standard Organization. In: Biological evaluation of medical devices part 5: tests for cytotoxicity: in vitro methods 10993–5. 2009.Google Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2019

Authors and Affiliations

  • Ivana R. Scolari
    • 1
  • Paulina L. Páez
    • 1
  • Mariela E. Sánchez-Borzone
    • 2
  • Gladys E. Granero
    • 1
    Email author
  1. 1.Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de CórdobaCiudad UniversitariaCórdobaArgentina
  2. 2.Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), CONICET and Cátedra de Química Biológica, Departamento de Química, Facultad de Ciencias de Exactas, Físicas y Naturales, Universidad Nacional de CórdobaCiudad UniversitariaCórdobaArgentina

Personalised recommendations