AAPS PharmSciTech

, 20:4 | Cite as

Stability, Cytotoxicity, and Retinal Pigment Epithelial Cell Binding of Hyaluronic Acid-Coated PLGA Nanoparticles Encapsulating Lutein

  • Chuda ChittasuphoEmail author
  • Penpitcha Posritong
  • Pakaporn Ariyawong
Research Article


The application of lutein was limited due to water insolubility and susceptible to heat and light degradation. In this study, hyaluronic acid (HA)-coated PLGA nanoparticles encapsulating lutein were fabricated by a solvent displacement method to improve the physicochemical properties and the stability of lutein. A biphasic release profile of lutein was observed, following zero-order release kinetics. The physical stability of lutein stored at 4°C, 30°C, and 40°C for 30 days was enhanced when lutein was encapsulated in the nanoparticles. The degradation of lutein in PLGA NPs coated with HA was fitted to a second-order kinetic model. The rate constant increased with increasing storage temperature. The activation energy of lutein-NPs was 63.26 kJ/mol. The half-lives of lutein in PLGA-NPs were about 49, 4, and 2 days at a storage temperature of 4°C, 30°C, and 40°C, respectively. The results suggested that lutein-NPs should be stored at 4°C to prevent physical and chemical degradation. The photodegradation of lutein in NPs followed a second-order kinetic model. The rate constant was 0.0155 mg-1 ml day-1. Cell viability study revealed that HA-coated PLGA nanoparticles encapsulating lutein did not show toxicity against retinal pigment epithelial cells (ARPE-19). The NPs bound ARPE-19 cells in a time- and a dose-dependent manner. The binding efficiency of lutein-NPs decreased at higher concentrations, suggesting that the NPs might reach binding saturation capacity. In conclusion, HA-coated PLGA nanoparticles could be used to deliver lutein and improved physicochemical property of lutein.

Graphical abstract


lutein nanoparticles PLGA stability ARPE-19 cells 



The authors gratefully acknowledge the use of the facility of the Research Center for Drug Discovery and Development, Srinakharinwirot University.

Funding Information

This work was funded by the Faculty of Pharmacy, Srinakharinwirot University (grant number 105/2561) and Research Promotion Fund, Srinakharinwirot University.


  1. 1.
    Ambati J, Ambati BK, Yoo SH, Ianchulev S, Adamis AP. Age-related macular degeneration: etiology, pathogenesis, and therapeutic strategies. Surv Ophthalmol. 2003;48(3):257–93.CrossRefGoogle Scholar
  2. 2.
    Gehrs KM, Anderson DH, Johnson LV, Hageman GS. Age-related macular degeneration--emerging pathogenetic and therapeutic concepts. Ann Med. 2006;38(7):450–71.CrossRefGoogle Scholar
  3. 3.
    Gass JD. Drusen and disciform macular detachment and degeneration. 1972. Retina. 2003;23(6 Suppl):409–36.PubMedGoogle Scholar
  4. 4.
    Tanito M, Anderson R. Dual roles of polyunsaturated fatty acids in retinal physiology and pathophysiology associated with retinal degeneration. Clin Lipidol. 2009;4(6):821–7.CrossRefGoogle Scholar
  5. 5.
    Nishimura Y, Hara H, Kondo M, Hong S, Matsugi T. Oxidative stress in retinal diseases. Oxidative Med Cell Longev. 2017:4076518.Google Scholar
  6. 6.
    Beatty S, Koh H, Phil M, Henson D, Boulton M. The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv Ophthalmol. 2000;45(2):115–34.CrossRefGoogle Scholar
  7. 7.
    Marazita MC, Dugour A, Marquioni-Ramella MD, Figueroa JM, Suburo AM. Oxidative stress-induced premature senescence dysregulates VEGF and CFH expression in retinal pigment epithelial cells: implications for age-related macular degeneration. Redox Biol. 2016;7:78–87.CrossRefGoogle Scholar
  8. 8.
    Schmidl D, Garhofer G, Schmetterer L. Nutritional supplements in age-related macular degeneration. Acta Ophthalmol. 2015;93(2):105–21.CrossRefGoogle Scholar
  9. 9.
    Kostic D, White WS, Olson JA. Intestinal absorption, serum clearance, and interactions between lutein and beta-carotene when administered to human adults in separate or combined oral doses. Am J Clin Nutr. 1995;62(3):604–10.CrossRefGoogle Scholar
  10. 10.
    Thurmann PA, Schalch W, Aebischer JC, Tenter U, Cohn W. Plasma kinetics of lutein, zeaxanthin, and 3-dehydro-lutein after multiple oral doses of a lutein supplement. Am J Clin Nutr. 2005;82(1):88–97.CrossRefGoogle Scholar
  11. 11.
    Liu CH, Chiu HC, Wu WC, Sahoo SL, Hsu CY. Novel lutein loaded lipid nanoparticles on porcine corneal distribution. J Ophthalmol. 2014:304694.Google Scholar
  12. 12.
    Phelan D, Prado-Cabrero A, Nolan JM. Stability of commercially available macular carotenoid supplements in oil and powder formulations. Nutrients. 2017;9(10):1133.Google Scholar
  13. 13.
    Chaiyasan W, Srinivas SP. Tiyaboonchai W. Development and characterization of topical ophthalmic formulations containing lutein-loaded mucoadhesive nanoparticles. Int J Pharm Pharm Sci. 2016;8(3):261–6.Google Scholar
  14. 14.
    Lombardo M, Villari V, Micali N, Roy P, Sousa SH, Lombardo G. Assessment of trans-scleral iontophoresis delivery of lutein to the human retina. J Biophotonics. 2018;11(3).Google Scholar
  15. 15.
    Lam TT, Fu J, Tso MO. A histopathologic study of retinal lesions inflicted by transscleral iontophoresis. Graefes Arch Clin Exp Ophthalmol. 1991;229(4):389–94.CrossRefGoogle Scholar
  16. 16.
    Bucolo C, Drago F, Salomone S. Ocular drug delivery: a clue from nanotechnology. Front Pharmacol. 2012;3:188.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Liu NP, Roberts WL, Hale LP, Levesque MC, Patel DD, Lu CL, et al. Expression of CD44 and variant isoforms in cultured human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci. 1997;38(10):2027–37.PubMedGoogle Scholar
  18. 18.
    Dubois M, Gilles K, Hamilton JK, Rebers PA, Smith F. A colorimetric method for the determination of sugars. Nature. 1951;168(4265):167.CrossRefGoogle Scholar
  19. 19.
    Sharma N, Madan P, Lin SS. Effect of process and formulation variables on the preparation of parenteral paclitaxel-loaded biodegradable polymeric nanoparticles: a co-surfactant study. Asian J Pharm Sci. 2016;11(3):404–16.CrossRefGoogle Scholar
  20. 20.
    Gryparis EC, Mattheolabakis G, Bikiaris D, Avgoustakis K. Effect of conditions of preparation on the size and encapsulation properties of PLGA-mPEG nanoparticles of cisplatin. Drug Deliv. 2007;14(6):371–80.CrossRefGoogle Scholar
  21. 21.
    Lamprecht A, Ubrich N, Hombreiro P, Lehr C, Hoffman M, PM P. Influence of process parameters on nanoparticle preparation by a double emulsion pressure homogenization technique. Int J Pharm. 2000;196:177–82.CrossRefGoogle Scholar
  22. 22.
    Cerqueira BBS, Lasham A, Shelling AN, Al-Kassas R. Development of biodegradable PLGA nanoparticles surface engineered with hyaluronic acid for targeted delivery of paclitaxel to triple negative breast cancer cells. Mater Sci Eng C Mater Biol Appl. 2017;76:593–600.CrossRefGoogle Scholar
  23. 23.
    Boury F, Ivanova T, Panaı̈otov I, Proust JE, Bois A, Richou J. Dynamic properties of poly(DL-lactide) and polyvinyl alcohol monolayers at the air/water and dichloromethane/water interfaces. J Colloid Interface Sci. 1995;169(2):380–92.CrossRefGoogle Scholar
  24. 24.
    Almalik A, Donno R, Cadman CJ, Cellesi F, Day PJ, Tirelli N. Hyaluronic acid-coated chitosan nanoparticles: molecular weight-dependent effects on morphology and hyaluronic acid presentation. J Control Release. 2013;172(3):1142–50.CrossRefGoogle Scholar
  25. 25.
    Barbault-Foucher S, Gref R, Russo P, Guechot J, Bochot A. Design of poly-epsilon-caprolactone nanospheres coated with bioadhesive hyaluronic acid for ocular delivery. J Control Release. 2002;83(3):365–75.CrossRefGoogle Scholar
  26. 26.
    Tantra R, Jing SH, Pichaimuthu SK, Walker N, Noble J, Hackley VA. Dispersion stability of nanoparticles in ecotoxicological investigations: the need for adequate measurement tools. J Nanopart Res. 2011;13(9):3765–80.CrossRefGoogle Scholar
  27. 27.
    Shi XM, Chen F. Stability of lutein under various storage conditions. Mol Nutr Food Res. 1997;41(1):38–41.Google Scholar
  28. 28.
    Ahmad FT, Asenstorfer RE, Soriano IR, Mares DJ. Effect of temperature on lutein esterification and lutein stability in wheat grain. J Cereal Sci. 2013;58(3):408–13.CrossRefGoogle Scholar
  29. 29.
    Chuacharoen T, Sabliov CM. Stability and controlled release of lutein loaded in zein nanoparticles with and without lecithin and pluronic F127 surfactants. Colloids Surf A Physicochem Eng Asp. 2016;503:11–8.CrossRefGoogle Scholar
  30. 30.
    Aparicio-Ruiz R, Minguez-Mosquera MI, Gandul-Rojas B. Thermal degradation kinetics of lutein, beta-carotene and beta-cryptoxanthin in virgin olive oils. J Food Compos Anal. 2011;24(6):811–20.CrossRefGoogle Scholar
  31. 31.
    Teo A, Lee SJ, Goh KKT, Wolber FM. Kinetic stability and cellular uptake of lutein in WPI-stabilised nanoemulsions and emulsions prepared by emulsification and solvent evaporation method. Food Chem. 2017;221:1269–76.CrossRefGoogle Scholar
  32. 32.
    Lim ASL, Griffin C, Roos YH. Stability and loss kinetics of lutein and β-carotene encapsulated in freeze-dried emulsions with layered interface and trehalose as glass former. Food Res Int. 2014;62:403–9.CrossRefGoogle Scholar
  33. 33.
    Singh S, Zheng JJ, Peiper SC, McLaughlin BJ. Gene expression profile of ARPE-19 during repair of the monolayer. Graefes Arch Clin Exp Ophthalmol. 2001;239(12):946–51.CrossRefGoogle Scholar
  34. 34.
    Ouasti S, Kingham PJ, Terenghi G, Tirelli N. The CD44/integrins interplay and the significance of receptor binding and re-presentation in the uptake of RGD-functionalized hyaluronic acid. Biomaterials. 2012;33(4):1120–34.CrossRefGoogle Scholar
  35. 35.
    Truppe W, Basner R, von Figura K, Kresse H. Uptake of hyaluronate by cultured cells. Biochem Biophys Res Commun. 1977;78(2):713–9.CrossRefGoogle Scholar
  36. 36.
    Underhill CB, Thurn AL, Lacy BE. Characterization and identification of the hyaluronate binding site from membranes of SV-3T3 cells. J Biol Chem. 1985;260(13):8128–33.PubMedGoogle Scholar
  37. 37.
    Wolny PM, Banerji S, Gounou C, Brisson AR, Day AJ, Jackson DG, et al. Analysis of CD44-hyaluronan interactions in an artificial membrane system: insights into the distinct binding properties of high and low molecular weight hyaluronan. J Biol Chem. 2010;285(39):30170–80.CrossRefGoogle Scholar
  38. 38.
    Hossaini Nasr S, Tonson A, El-Dakdouki MH, Zhu DC, Agnew D, Wiseman R, et al. Effects of nanoprobe morphology on cellular binding and inflammatory responses: hyaluronan-conjugated magnetic nanoworms for magnetic resonance imaging of atherosclerotic plaques. ACS Appl Mater Interfaces. 2018;10(14):11495–507.CrossRefGoogle Scholar
  39. 39.
    Shen H, Shi S, Zhang Z, Gong T, Sun X. Coating solid lipid nanoparticles with hyaluronic acid enhances antitumor activity against melanoma stem-like cells. Theranostics. 2015;5(7):755–71.CrossRefGoogle Scholar
  40. 40.
    Hung HI, Klein OJ, Peterson SW, Rokosh SR, Osseiran S, Nowell NH, et al. PLGA nanoparticle encapsulation reduces toxicity while retaining the therapeutic efficacy of EtNBS-PDT in vitro. Sci Rep. 2016;6:33234.CrossRefGoogle Scholar
  41. 41.
    Park KE, Noh YW, Kim A, Lim YT. Hyaluronic acid-coated nanoparticles for targeted photodynamic therapy of cancer guided by near-infrared and MR imaging. Carbohydr Polym. 2017;157:476–83.CrossRefGoogle Scholar
  42. 42.
    Choi JH, Kim SO, Linardy E, Dreaden EC, Zhdanov VP, Hammond PT, et al. Adsorption of hyaluronic acid on solid supports: role of pH and surface chemistry in thin film self-assembly. J Colloid Interface Sci. 2015;448:197–207.CrossRefGoogle Scholar
  43. 43.
    Necas JBLBP, Kolar J. Hyaluronic acid (hyaluronan): a review. Vet Med. 2008;53:397–411.CrossRefGoogle Scholar
  44. 44.
    Li J, Hu Y, Yang J, Wei P, Sun W, Shen M, et al. Hyaluronic acid-modified Fe3O4@Au core/shell nanostars for multimodal imaging and photothermal therapy of tumors. Biomaterials. 2015;38:10–21.CrossRefGoogle Scholar
  45. 45.
    Wang S, Zhang J, Wang Y, Chen M. Hyaluronic acid-coated PEI-PLGA nanoparticles mediated co-delivery of doxorubicin and miR-542-3p for triple negative breast cancer therapy. Nanomedicine. 2016;12(2):411–20.CrossRefGoogle Scholar
  46. 46.
    Giarra S, Serri C, Russo L, Zeppetelli S, De Rosa G, Borzacchiello A, et al. Spontaneous arrangement of a tumor targeting hyaluronic acid shell on irinotecan loaded PLGA nanoparticles. Carbohydr Polym. 2016;140:400–7.CrossRefGoogle Scholar
  47. 47.
    Mu L, Feng SS. Vitamin E TPGS used as emulsifier in the solvent evaporation/extraction technique for fabrication of polymeric nanospheres for controlled release of paclitaxel (Taxol®). J Control Release. 2002;80(103):129–44.CrossRefGoogle Scholar
  48. 48.
    Petrovic J, Ibric S, Betz G, Parojcic J, Duric Z. Application of dynamic neural networks in the modeling of drug release from polyethylene oxide matrix tablets. Eur J Pharm Sci. 2009;38(2):172–80.CrossRefGoogle Scholar
  49. 49.
    Chankhampan C, Manosroi J, Yamamoto H, Tahara K, Manosroi W, Kawashima Y, et al. Chemical stability enhancement and cytotoxicity reduction of papain loaded in PLGA nanospheres. J Exp Nanosci. 2014;9(2):138–51.CrossRefGoogle Scholar
  50. 50.
    Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel). 2011;3(3):1377–97.CrossRefGoogle Scholar
  51. 51.
    Grayson ACR, Cima MJ, Langer R. Size and temperature effects on poly(lactic-co-glycolic acid) degradation and microreservoir device performance. Biomaterials. 2005;26(14):2137–45.CrossRefGoogle Scholar
  52. 52.
    Dunne M, Corrigan I, Ramtoola Z. Influence of particle size and dissolution conditions on the degradation properties of polylactide-co-glycolide particles. Biomaterials. 2000;21(16):1659–68.CrossRefGoogle Scholar
  53. 53.
    Henry LK, Catignani GL, Schwartz SJ. Oxidative degradation kinetics of lycopene, lutein, and 9-cis and all-trans β-carotene, European Journal of Lipid Science and Technology. J Am Oil Chem Soc. 1998;75(7):823–9.CrossRefGoogle Scholar
  54. 54.
    Achir N, Randrianatoandro VA, Bohuon P, Laffargue A, Avallone S. Kinetic study of β-carotene and lutein degradation in oils during heat treatment. Eur J Lipid Sci Technol. 2010;112(3):349–61.Google Scholar
  55. 55.
    Lornejad-Schafer MR, Lambert C, Breithaupt DE, Biesalski HK, Frank J. Solubility, uptake and biocompatibility of lutein and zeaxanthin delivered to cultured human retinal pigment epithelial cells in tween40 micelles. Eur J Nutr. 2007;46(2):79–86.CrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2018

Authors and Affiliations

  • Chuda Chittasupho
    • 1
    Email author
  • Penpitcha Posritong
    • 1
  • Pakaporn Ariyawong
    • 1
  1. 1.Department of Pharmaceutical Technology, Faculty of PharmacySrinakharinwirot UniversityOngkarakThailand

Personalised recommendations