AAPS PharmSciTech

, 20:31 | Cite as

Determination of Mycoplasma hyopneumoniae-Specific IgG, IgG1, and IgG2a Titers in BALB/c Mice Induced by Mineral Oil-Based Oil-in-Water Emulsion Adjuvants Prepared Using a Self-Emulsifying Drug Delivery System

  • Rakesh Bastola
  • Jo-Eun Seo
  • Gyubin Noh
  • Taekwang Keum
  • Ju Hun Kim
  • Jong Il Shin
  • Sooyeun Lee
  • Sangkil LeeEmail author
Research Article


We prepared mineral oil-based emulsion adjuvants by employing simple self-emulsifying drug delivery system (SEDDS). Mineral oil emulsions (3%, 5%, and 7%) were prepared using deionized water and C-971P NF and C-940 grade carbomer solutions with concentrations 0.01% (w/v) and 0.02% (w/v). In total, 15 emulsions were prepared and mixed with a solution containing inactivated Mycoplasma hyopneumoniae (J101 strain) antigen and porcine circovirus type 2 antigen to prepare vaccines. Droplet sizes in the submicron range and zeta potential values between − 40 and 0 mV were maintained by most emulsion adjuvants for a period of 6 months. Emulsion adjuvants were regarded safe, and their M. hyopneumoniae-specific IgG, IgG1, and IgG2a titers were either better or comparable to those of aluminum gel.


self-emulsifying drug delivery system mineral oil-based emulsion adjuvant Mycoplasma hyopneumoniae-specific IgG, IgG1, and IgG2a titers 


Funding Information

This research was supported by Technology Development Program (Project Nos. 316093-2 and 316094-2) for Bio-industry, Ministry for Agriculture, Food and Rural Affairs, Republic of Korea. This research was also supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1A6A1A03011325).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.


  1. 1.
    Bastola R, Noh G, Keum T, Bashyal S, Seo JE, Choi J, et al. Vaccine adjuvants: smart components to boost the immune system. Arch Pharm Res. 2017;40(11):1238–48.CrossRefGoogle Scholar
  2. 2.
    Bobbala S, Hook S. Is there an optimal formulation and delivery strategy for subunit vaccines? Pharm Res. 2016;33(9):2078–97.CrossRefGoogle Scholar
  3. 3.
    Iyer V, Cayatte C, Marshall JD, Sun J, Schneider-Ohrum K, Maynard SK, et al. Feasibility of freeze-drying oil-in-water emulsion adjuvants and subunit proteins to enable single-vial vaccine drug products. J Pharm Sci. 2017;106(6):1490–8.CrossRefGoogle Scholar
  4. 4.
    Brito LA, Malyala P, O’Hagan DT. Vaccine adjuvant formulations: a pharmaceutical perspective. Semin Immunol. 2013;25:130–45.CrossRefGoogle Scholar
  5. 5.
    Thapa RK, Choi HG, Kim JO, Yong CS. Analysis and optimization of drug solubility to improve pharmacokinetics. J Pharm Investig. 2017;47(2):95–110.CrossRefGoogle Scholar
  6. 6.
    Wang Z, Pal R. Enlargement of nanoemulsion region in pseudo-ternary mixing diagrams for a drug delivery system. J Surfactant Deterg. 2014;17(1):49–58.CrossRefGoogle Scholar
  7. 7.
    Lee S, Lee J, Choi YW. Design and evaluation of prostaglandin E1 (PGE1) intraurethral liquid formulation employing self-microemulsifying drug delivery system (SMEDDS) for erectile dysfunction treatment. Biol Pharm Bull. 2008;31(4):668–72.CrossRefGoogle Scholar
  8. 8.
    Stipkovits L, Czifra G, Sundquist B. Indirect ELISA for the detection of a specific antibody response against Mycoplasma gallisepticum. Avian Pathol. 1993;22(3):481–94.CrossRefGoogle Scholar
  9. 9.
    Ostertag F, Weiss J, McClements DJ. Low-energy formation of edible nanoemulsions: factors influencing droplet size produced by emulsion phase inversion. J Colloid Interface Sci. 2012;388(1):95–102.CrossRefGoogle Scholar
  10. 10.
    Naskar MK, Kundu D, Chatterjee M. Effect of process parameters on surfactant-based synthesis of hydroxy sodalite particles. Mater Lett. 2011;65(3):436–8.CrossRefGoogle Scholar
  11. 11.
  12. 12.
    Mair KH, Koinig H, Gerner W, Höhne A, Bretthauer J, Kroll JJ, et al. Carbopol improves the early cellular immune responses induced by the modified-life vaccine Ingelvac PRRS® MLV. Vet Microbiol. 2015;176(3–4):352–7.CrossRefGoogle Scholar
  13. 13.
    Fox CB, Anderson RC, Dutill TS, Goto Y, Reed SG, Vedvick TS. Monitoring the effects of component structure and source on formulation stability and adjuvant activity of oil-in-water emulsions. Colloids Surf B: Biointerfaces. 2008;65(1):98–105.CrossRefGoogle Scholar
  14. 14.
    Nepal PR, Han HK, Choi HK. Preparation and in vitroin vivo evaluation of Witepsol® H35 based self-nanoemulsifying drug delivery systems (SNEDDS) of coenzyme Q10. Eur J Pharm Sci. 2010;39(4):224–32.CrossRefGoogle Scholar
  15. 15.
    Honary S, Zahir F. Effect of zeta potential on the properties of nano-drug delivery systems-a review (part 2). Trop J Pharm Res. 2013;12(2):265–73.Google Scholar
  16. 16.
    Galliher-Beckley A, Pappan LK, Madera R, Burakova Y, Waters A, Nickles M, et al. Characterization of a novel oil-in-water emulsion adjuvant for swine influenza virus and Mycoplasma hyopneumoniae vaccines. Vaccine. 2015;33(25):2903–8.CrossRefGoogle Scholar
  17. 17.
    Fan Y, Ma X, Ma L, Zhang J, Zhang W, Song X. Antioxidative and immunological activities of ophiopogon polysaccharide liposome from the root of Ophiopogon japonicus. Carbohydr Polym. 2016;135:110–20.CrossRefGoogle Scholar
  18. 18.
    Burakova Y, Madera R, McVey S, Schlup JR, Shi J. Adjuvants for animal vaccines. Viral Immunol. 2018;31(1):11–22.CrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2019

Authors and Affiliations

  • Rakesh Bastola
    • 1
  • Jo-Eun Seo
    • 1
  • Gyubin Noh
    • 1
  • Taekwang Keum
    • 1
  • Ju Hun Kim
    • 2
  • Jong Il Shin
    • 2
  • Sooyeun Lee
    • 1
  • Sangkil Lee
    • 1
    Email author
  1. 1.College of PharmacyKeimyung UniversityDaeguRepublic of Korea
  2. 2.Komipharm International Co., Ltd.Siheung-siRepublic of Korea

Personalised recommendations