AAPS PharmSciTech

, 20:11 | Cite as

Recent Advances in Formulation Strategies for Efficient Delivery of Vitamin D

  • Rahul Gupta
  • Chittaranjan Behera
  • Gourav Paudwal
  • Neha Rawat
  • Ashish Baldi
  • Prem N. GuptaEmail author
Review Article Theme: Lipid-Based Drug Delivery Strategies for Oral Drug Delivery
Part of the following topical collections:
  1. Theme: Lipid-Based Drug Delivery Strategies for Oral Drug Delivery


Deficiency of vitamin D is a global concern affecting a huge number of human populations. This deficiency has a serious impact on human health not only affecting bone mineral density but also becoming the reason for cardiovascular disorders, infectious diseases, autoimmune diseases and cancers. Exposure to sunlight is the major source of vitamin D, but due to the present day-to-day lifestyle of working in a shade arouses the need for exogenous sources of vitamin D. Ergocalciferol (vitamin D2) and cholecalciferol (vitamin D3) are the two major forms of vitamin D, which are hydrophobic in nature and highly susceptible to environmental conditions, like temperature and light. Therefore, novel drug delivery systems could be explored for efficient delivery of vitamin D. In this review, a brief account of vitamin D is provided followed by a detailed description of recent advances in various delivery systems, including solid lipid nanoparticles, nanoemulsion, self-emulsifying drug delivery systems, polymeric nanoparticles and solid dispersion, for the efficient delivery of vitamin D.


nanoformulations vitamin D ergocalciferol cholecalciferol solid lipid nanoparticles 


Compliance with Ethical Standards

Conflict of Interest

The authors declare that there is no conflict of interest associated with this publication. The institute publication number for this manuscript is IIIM/2240/2018.


  1. 1.
    Hwalla N, Al-Dhaheri AS, Radwan H, Alfawaz HA, Fouda MA, Al-Daghri NM, et al. The prevalence of micronutrient deficiencies and inadequacies in the Middle East and approaches to interventions. Nutrients. 2017;9(3):228.CrossRefGoogle Scholar
  2. 2.
    Gupta R, Gupta A. Vitamin D deficiency in India: prevalence, causalities and interventions. Nutrients. 2014;6(2):729–75.CrossRefGoogle Scholar
  3. 3.
    Kennel KA, Drake MT, Hurley DL. Vitamin D deficiency in adults: when to test and how to treat. Mayo Clin Proc. 2010;85(8):752–8.CrossRefGoogle Scholar
  4. 4.
    Thacher TD, Clarke BL. Vitamin D insufficiency. Mayo Clin Proc. Elsevier. 2017;86(1):50–60.CrossRefGoogle Scholar
  5. 5.
    Mostafa WZ, Hegazy RA. Vitamin D and the skin: focus on a complex relationship: a review. J Adv Res. 2015;6(6):793–804.CrossRefGoogle Scholar
  6. 6.
    FAO/WHO. Human vitamins and mineral requirements. In: Report of a joint FAO/WHO expert consultation in Bangkok, Thailand. FAO and Nutrition Division FAO Rome. 2001. Accessed 10 Dec 2017.
  7. 7.
    Lavie CJ, Lee JH, Milani RV. Vitamin D and cardiovascular disease. J Am Coll Cardiol. 2011;58(15):1547–56.CrossRefGoogle Scholar
  8. 8.
    Joergensen C, Gall M-A, Schmedes A, Tarnow L, Parving H-H, Rossing P. Vitamin D levels and mortality in type 2 diabetes. Diabetes Care. 2010;33(10):2238 LP–2243.CrossRefGoogle Scholar
  9. 9.
    Schwalfenberg G. Vitamin D and diabetes: improvement of glycemic control with vitamin D3 repletion. Can Fam Physician. 2008;54(6):864–6.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Tuohimaa P. Vitamin D, aging, and cancer. Nutr Rev. 2008;66(SUPPL.2):147–52.CrossRefGoogle Scholar
  11. 11.
    Garland CF, Gorham ED, Mohr SB, Garland FC. Vitamin D for cancer prevention: global perspective. Ann Epidemiol. 2009;19(7):468–83.CrossRefGoogle Scholar
  12. 12.
    Vitamin D: fact sheet for health professionals. NIH Office of Dietary Supplements, USA. 2018. Accessed 20 Dec 2017.
  13. 13.
    Hollick M, Vitamin D. Treatment guidelines. In: Munjal YP, editor. Medicine update. India: The Association of Physicians of India; 2013. p. 619–25.Google Scholar
  14. 14.
    Ross AC, Taylor CL, Yaktine AL, Valle HBD. Dietary reference intakes for calcium and vitamin D. US: National Academic Press; 2011.Google Scholar
  15. 15.
    Mcneill AM, Wesner E. Sun protection and vitamin D. Skin Cancer Foundation J. 2016. Accessed 25 Jan 2018.
  16. 16.
    Clemens TL, Adams JS, Henderson SL, Holick MF. Increased skin pigment reduces the capacity of skin to synthesise vitamin D3. Lancet (London, England). 1982;1(8263):74–6.CrossRefGoogle Scholar
  17. 17.
    Holick MF. Vitamin D deficiency. N Engl J Med. 2007;357(3):266–81.CrossRefGoogle Scholar
  18. 18.
    Patients O, Lagunova Z, Porojnicu AC, Vieth R, F a L, Hexeberg S, et al. Serum 25-hydroxyvitamin D is a predictor of serum 1, 25-dihydroxyvitamin D in overweight and obese patients. J Nutr. 2011;141(1):112–7.CrossRefGoogle Scholar
  19. 19.
    Mazahery H, von Hurst PR. Factors affecting 25-hydroxyvitamin D concentration in response to vitamin D supplementation. Nutrients. 2015;7(7):5111–42.CrossRefGoogle Scholar
  20. 20.
    Grey A, Lucas J, Horne A, Gamble G, Davidson JS, Reid IR. Vitamin D repletion in patients with primary hyperparathyroidism and coexistent vitamin D insufficiency. J Clin Endocrinol Metab. 2005;90(4):2122–6.CrossRefGoogle Scholar
  21. 21.
    Adams JS, Hewison M. Hypercalcemia caused by granuloma forming disorders. In: Favus MJ, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. Washington DC: American Society for Bone and Mineral Research; 2006. p. 200–2.Google Scholar
  22. 22.
    Wagner CL, Greer FR. Prevention of rickets and vitamin D deficiency in infants, children, and adolescents. Pediatrics. 2008;122(5):1142–52.CrossRefGoogle Scholar
  23. 23.
    MacLaughlin J, Holick MF. Aging decreases the capacity of human skin to produce vitamin D3. J Clin Invest. 1985;76(4):1536–8.CrossRefGoogle Scholar
  24. 24.
    Mithal A, Wahl DA, Bonjour J-P, Burckhardt P, Dawson-Hughes B, Eisman JA, et al. Global vitamin D status and determinants of hypovitaminosis D. Osteoporos Int. 2009;20(11):1807–20.CrossRefGoogle Scholar
  25. 25.
    Bruyere O, Slomian J, Beaudart C, Buckinx F, Cavalier E, Gillain S, et al. Prevalence of vitamin D inadequacy in European women aged over 80 years. Arch Gerontol Geriatr. 2014;59(1):78–82.CrossRefGoogle Scholar
  26. 26.
    O’Keefe JH, Patil HR, Lavie CJ. Can vitamin D deficiency break your heart? Mayo Clin Proc. Elsevier Inc. 2012;87(4):412–3.CrossRefGoogle Scholar
  27. 27.
    O’Mahony L, Stepien M, Gibney MJ, Nugent AP, Brennan L. The potential role of vitamin D enhanced foods in improving vitamin D status. Nutrients. 2011;3(12):1023–41.CrossRefGoogle Scholar
  28. 28.
    Japelt RB, Jakobsen J. Vitamin D in plants: a review of occurrence, analysis, and biosynthesis. Front Plant Sci. 2013;4(136):1–20.Google Scholar
  29. 29.
    National Center for Biotechnology Information. National library of medicine. USA: PubChem. Accessed 11 Oct 2017
  30. 30.
    DeLuca HF. The vitamin D story: a collaborative effort of basic science and clinical medicine. FASEB J Off Publ Fed Am Soc Exp Biol. 1988;2(3):224–36.Google Scholar
  31. 31.
    Holick MF, Chen TC, Lu Z, Sauter E. Vitamin D and skin physiology: a D-lightful story. J Bone Miner Res. 2007;22(SUPPL. 2):V28–33.CrossRefGoogle Scholar
  32. 32.
    Hollis BW. Comparison of equilibrium and disequilibrium assay conditions for ergocalciferol, cholecalciferol and their major metabolites. J Steroid Biochem. 1984;21(1):81–6.CrossRefGoogle Scholar
  33. 33.
    Houghton LA, Vieth R. The case against ergocalciferol (vitamin D2) as a vitamin supplement. Am J Clin Nutr. 2006;84(4):694–7.CrossRefGoogle Scholar
  34. 34.
    Cheng JB, Motola DL, Mangelsdorf DJ, Russell DW. De-orphanization of cytochrome P450 2R1: a microsomal vitamin D 25-hydroxilase. J Biol Chem. 2003;278(39):38084–93.CrossRefGoogle Scholar
  35. 35.
    Cheng JB, Levine MA, Bell NH, Mangelsdorf DJ, Russell DW. Genetic evidence that the human CYP2R1 enzyme is a key vitamin D 25-hydroxylase. Proc Natl Acad Sci. 2004;101(20):7711–5.CrossRefGoogle Scholar
  36. 36.
    Horst RL, Reinhardt TA, Ramberg CF, Koszewski NJ, Napoli JL. 24-Hydroxylation of 1,25-dihydroxyergocalciferol. An unambiguous deactivation process. J Biol Chem. 1986;261(20):9250–6.PubMedGoogle Scholar
  37. 37.
    Heaney RP, Recker RR, Grote J, Horst RL, Armas LAG. Vitamin D(3) is more potent than vitamin D(2) in humans. J Clin Endocrinol Metab. 2011;96(3):E447–52.CrossRefGoogle Scholar
  38. 38.
    Romagnoli E, Mascia ML, Cipriani C, Fassino V, Mazzei F, D’Erasmo E, et al. Short and long-term variations in serum calciotropic hormones after a single very large dose of ergocalciferol (vitamin D2) or cholecalciferol (vitamin D3) in the elderly. J Clin Endocrinol Metab. 2008;93(8):3015–20.CrossRefGoogle Scholar
  39. 39.
    Armas LAG, Hollis BW, Heaney RP. Vitamin D2 is much less effective than vitamin D3 in humans. J Clin Endocrinol Metab. 2004;89(11):5387–91.CrossRefGoogle Scholar
  40. 40.
    Glendenning P, Chew GT, Seymour HM, Gillett MJ, Goldswain PR, Inderjeeth CA, et al. Serum 25-hydroxyvitamin D levels in vitamin D-insufficient hip fracture patients after supplementation with ergocalciferol and cholecalciferol. Bone. 2009;45(5):870–5.CrossRefGoogle Scholar
  41. 41.
    Leventis P, Kiely PDW. The tolerability and biochemical effects of high-dose bolus vitamin D2 and D3 supplementation in patients with vitamin D insufficiency. Scand J Rheumatol. 2009;38(2):149–53.CrossRefGoogle Scholar
  42. 42.
    Perry CL, Mcguire MT, Neumark-Sztainer D, Story M. Characteristics of vegetarian adolescents in a multiethnic urban population. J Adolesc Health. 2001;29(6):406–16.CrossRefGoogle Scholar
  43. 43.
    Key TJ, Appleby PN, Rosell MS. Health effects of vegetarian and vegan diets. Proc Nutr Soc. 2006;65(01):35–41.CrossRefGoogle Scholar
  44. 44.
    Wacker M, Holick MF. Sunlight and vitamin D: a global perspective for health. Dermatoendocrinol Landes Biosci. 2013;5(1):51–108.CrossRefGoogle Scholar
  45. 45.
    Zand L, Kumar R. The use of vitamin D metabolites and analogues in the treatment of chronic kidney disease. Endocrinol Metab Clin N Am. Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic. 2017;46(4):983–1007.CrossRefGoogle Scholar
  46. 46.
    Levin A, Bakris GL, Molitch M, Smulders M, Tian J, Williams LA, et al. Prevalence of abnormal serum vitamin D, PTH, calcium, and phosphorus in patients with chronic kidney disease: results of the study to evaluate early kidney disease. Kidney Int. 2007;71(1):31–8.CrossRefGoogle Scholar
  47. 47.
    DeLuca HF. Chemistry, metabolism, and circulation. In: Feldman D, Pike WJ, Adams J, editors. Vitamin D. San Diego: Academic Press; 2005. p. 3–11.CrossRefGoogle Scholar
  48. 48.
    Plum LA, DeLuca HF. The functional metabolism and molecular biology of vitamin D action. Clin Rev Bone Miner Metab. 2009;7(1):20–41.CrossRefGoogle Scholar
  49. 49.
    Cunningham J, Zehnder D. New vitamin D analogs and changing therapeutic paradigms. Kidney Int. Nature Publishing Group. 2011;79(7):702–7.CrossRefGoogle Scholar
  50. 50.
    Gallieni M, Kamimura S, Ahmed A, Bravo E, Delmez J, Slatopolsky E, et al. Kinetics of monocyte 1 alpha-hydroxylase in renal failure. Am J Phys. 1995;268(4 Pt 2):F746–53.Google Scholar
  51. 51.
    Dusso AS, Negrea L, Gunawardhana S, Lopez-Hilker S, Finch J, Mori T, et al. On the mechanisms for the selective action of vitamin D analogs. Endocrinology. 1991;128(4):1687–92.CrossRefGoogle Scholar
  52. 52.
    Bouillon R, Carmeliet G, Verlinden L, van Etten E, Verstuyf A, Luderer HF, et al. Vitamin D and human health: lessons from vitamin D receptor null mice. Endocr Rev. 2008;29(6):726–76.CrossRefGoogle Scholar
  53. 53.
    Plum LA, DeLuca HF. Vitamin D, disease and therapeutic opportunities. Nat Rev Drug Discov. 2010;9(12):941–55.CrossRefGoogle Scholar
  54. 54.
    National Center for Biotechnology Information. National library of medicine. USA: PubChem. Accessed 09 Jan 2018
  55. 55.
    Kaur IP, Verma MK. Process for preparing solid lipid sustained release nanoparticles for delivery of vitamins. United States patent, US 9907758B. 2014. 6.Google Scholar
  56. 56.
    Patel MR, San Martin-Gonzalez MF. Characterization of ergocalciferol loaded solid lipid nanoparticles. J Food Sci. 2012;77(1):8–11.CrossRefGoogle Scholar
  57. 57.
    Park SJ, Garcia CV, Shin GH, Kim JT. Development of nanostructured lipid carriers for the encapsulation and controlled release of vitamin D3. Food Chem. 2017;225:213–9.CrossRefGoogle Scholar
  58. 58.
    Demirbilek M, Lacin Turkoglu N, Akturk S, Akca C. VitD3-loaded solid lipid nanoparticles: stability, cytotoxicity and cytokine levels. J Microencapsul. 2017;34(5):454–62.CrossRefGoogle Scholar
  59. 59.
    Kumar M, Sharma G, Singla D, Singh S, Sahwney S, Chauhan AS, et al. Development of a validated UPLC method for simultaneous estimation of both free and entrapped (in solid lipid nanoparticles) all-trans retinoic acid and cholecalciferol (vitamin D3) and its pharmacokinetic applicability in rats. J Pharm Biomed Anal. 2014;91:73–80.CrossRefGoogle Scholar
  60. 60.
    Kalepu S, Manthina M, Padavala V. Oral lipid-based drug delivery systems—an overview. Acta Pharm Sin B. 2013;3(6):361–72.CrossRefGoogle Scholar
  61. 61.
    Maali A, Mosavian MTH. Preparation and application of nanoemulsions in the last decade (2000-2010). J Dispers Sci Technol. 2013;34(1):92–105.CrossRefGoogle Scholar
  62. 62.
    Guttoff M, Saberi AH, Mcclements DJ. Formation of vitamin D nanoemulsion-based delivery systems by spontaneous emulsification: factors affecting particle size and stability. Food Chem. Elsevier Ltd. 2015;171:117–22.CrossRefGoogle Scholar
  63. 63.
    Mousa AS. Nanoformulation of vitamin D derivatives and/or vitamin D metabolites. United States patent, US8968790B2. 2015. 3.Google Scholar
  64. 64.
    Fox M, Shakib L. Formulations comprising vitamin D or derivatives thereof. European patent, EP 2201937A1. 2010. 30.Google Scholar
  65. 65.
    Goncalves A, Gleize B, Roi S, Nowicki M, Dhaussy A, Huertas A, et al. Fatty acids affect micellar properties and modulate vitamin D uptake and basolateral efflux in Caco-2 cells. J Nutr Biochem. 2013;24(10):1751–7.CrossRefGoogle Scholar
  66. 66.
    Ozturk B, Argin S, Ozilgen M, McClements DJ. Nanoemulsion delivery systems for oil soluble vitamins: influence of carrier oil type on lipid digestion and vitamin D3 bioaccessability. Food Chem. 2015;187(15):499–506.CrossRefGoogle Scholar
  67. 67.
    Kohli K, Chopra S, Arora S, Khar RK, Pillai KK. Self-emulsifying drug delivery system for a curcuminoid based composition. United States patent, US 8835509B2. 2014. 16.Google Scholar
  68. 68.
    Boardman D, Karki S, Leyes A, Ostovic D. Process for preparing stabilized vitamin D. United States patent, US 0019933A1. 2006. 26.Google Scholar
  69. 69.
    Tang WH, Guan MC, Xu Z, Sun J. Pharmacological and pharmacokinetic studies with vitamin D-loaded nanoemulsions in asthma model. Inflammation. 2014;37(3):723–8.CrossRefGoogle Scholar
  70. 70.
    Omrav A, Bhide YS, Choudhary VS. Pharmaceutical compositions, comprising calcitriol and calcium. WIPO patent, WO 087652A3. 2009. 23.Google Scholar
  71. 71.
    Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. ACS Nano. 2009;3(1):16–20.CrossRefGoogle Scholar
  72. 72.
    Wischke C, Schwendeman SP. Principles of encapsulating hydrophobic drugs in PLA/PLGA microparticles. Int J Pharm. 2008;364(2):298–327.CrossRefGoogle Scholar
  73. 73.
    Hasanvand E, Fathi M, Bassiri A, Javanmard M, Abbaszadeh R. Novel starch based nanocarrier for Vitamin D fortification of milk: production and characterization. Food Bioprod Process. Institution of Chemical Engineers. 2015;96:264–77.CrossRefGoogle Scholar
  74. 74.
    Quiñones JP, Gothelf KV, Kjems J, Caballero ÁMH, Schmidt C, Covas CP. Self-assembled nanoparticles of glycol chitosan–ergocalciferol succinate conjugate, for controlled release. Carbohydr Polym. 2012;88(4):1373–7.CrossRefGoogle Scholar
  75. 75.
    Nguyen TLU, Tey SY, Pourgholami MH, Morris DL, Davis TP, Barner-Kowollik C, et al. Synthesis of semi-biodegradable crosslinked microspheres for the delivery of 1,25 dihydroxyvitamin D3 for the treatment of hepatocellular carcinoma. Eur Polym J. 2007;43(5):1754–67.CrossRefGoogle Scholar
  76. 76.
    Luo Y, Teng Z, Wang Q. Development of zein nanoparticles coated with carboxymethyl chitosan for encapsulation and controlled release of vitamin D3. J Agric Food Chem. 2012;60(3):836–43.CrossRefGoogle Scholar
  77. 77.
    Vora L, VG S, Vavia P. Zero order controlled release delivery of cholecalciferol from injectable biodegradable microsphere: in-vitro characterization and in-vivo pharmacokinetic studies. Eur J Pharm Sci. 2017;107:78–86.CrossRefGoogle Scholar
  78. 78.
    Huatan H. Vitamin D composition. European patent, EP 2680826B1. 2017. 23.Google Scholar
  79. 79.
    Bothiraja C, Pawar A, Deshpande G. Ex-vivo absorption study of a nanoparticle based drug delivery system of vitamin D3 (Arachitol Nano™) using everted intestinal sac technique. J Pharm Investig. 2016;46(5):425–32.CrossRefGoogle Scholar
  80. 80.
    Sun P, Pan K, Wu Y. Dronedarone solid dispersion and preparation method thereof. United States patent, US 8921416B2. 2014. 30.Google Scholar
  81. 81.
    Mahmoud MFAK, Ebeed MAMK. Homogeneous preparations containing vitamin D. European patent, EP 2468265A3. 2013. 2.Google Scholar
  82. 82.
    Jin JN, Woo JS, Yi HG. Complex formulation for preventing or treating osteoporosis which comprises solid dispersion of vitamin D or its derivative and bisphosphonate. United States patent, US 0048511A1. 2010. 25.Google Scholar
  83. 83.
    Valleri M, Tosetti A. Pharmaceutical compositions containing vitamin D and calcium, their preparation and therapeutic use. United States patent, US 7067154B1. 2006. 06.Google Scholar
  84. 84.
    Makino Y, Suzuki Y. Solid pharmaceutical preparation of active form of vitamin D3 of improved stability. United States patent, US 5158944A. 1992. 27.Google Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2018

Authors and Affiliations

  • Rahul Gupta
    • 1
  • Chittaranjan Behera
    • 1
  • Gourav Paudwal
    • 1
  • Neha Rawat
    • 2
  • Ashish Baldi
    • 2
  • Prem N. Gupta
    • 1
    Email author
  1. 1.Formulation & Drug Delivery DivisionCSIR-Indian Institute of Integrative MedicineJammu-TawiIndia
  2. 2.Department of PharmacyMaharaja Ranjit Singh Punjab Technical UniversityBathindaIndia

Personalised recommendations