Advertisement

AAPS PharmSciTech

, 20:13 | Cite as

Folic Acid-Functionalized Gold Nanorods for Controlled Paclitaxel Delivery: In Vitro Evaluation and Cell Studies

  • Ligeri Papaioannou
  • Athina Angelopoulou
  • Sophia Hatziantoniou
  • Maria Papadimitriou
  • Panagiotis Apostolou
  • Ioannis Papasotiriou
  • Konstantinos AvgoustakisEmail author
Research Article

Abstract

Short gold nanorods were synthesized (average length 28.08 nm, average aspect ratio 3.54), which were functionalized with folic acid (FA) and 8-mercaptooctanoic acid (MOA) or 11-mercaptoundecanoic acid (MDA) and loaded with paclitaxel (PCT). FA was conjugated to the nanorods in order to render them targetable for cancer cells overexpressing folate receptors whereas MOA or MDA was attached on the nanorods in order to generate extra hydrophobic areas for entrapment of hydrophobic drugs such as PCT in the nanorods and in order to provide free carboxylic groups, which would allow for the conjugation of drug or other biofunctional molecules to the nanorods. The functionalized gold nanorods (GNRs-MOA-FA and GNRs-MDA-FA) did not exhibit any significant degree of aggregation in cell culture medium and blood plasma even after a prolonged incubation period of 7 days, indicating the adequate colloidal stability of the nanorods in these media. The functionalized nanorods exhibited satisfactory entrapment efficiency (around 40%) for PCT and released less than 25% of their PCT content in phosphate buffer pH 7.4 in 48 h. PCT entrapment efficiency was a little higher and PCT release rate a little lower in the GNRs-MOA-FA. Molecular analysis (qPCR) was used to find out that the MDA-MB-231 cancer cell line expresses the folate receptor (FL1R) whereas the MCF-7 cancer cell line does not. The PCT-loaded GNRs-MOA-FA were more cytotoxic than the PCT-loaded GNRs-MOA nanorods against the MDA-MB-231 cells, which probably relates to the higher uptake of the GNRs-MOA-FA nanorods by these cells. The opposite was true in the case of the MCF-7 cells.

KEY WORDS

gold nanorods paclitaxel folic acid drug targeting cytotoxicity 

Notes

Acknowledgements

The authors thank Dr. Maria Kollia from the Laboratory of Electron Microscopy and Microanalysis at the University of Patras for the TEM images.

Supplementary material

12249_2018_1226_MOESM1_ESM.docx (41 kb)
Fig. S1 (DOCX 41 kb)

References

  1. 1.
    Sharma R, Mody N, Agrawal U, Vyas SP. Theranostic nanomedicine; a next generation platform for cancer diagnosis and therapy. Mini-Rev Med Chem. 2017;17(18):1746–57.CrossRefGoogle Scholar
  2. 2.
    Gobbo OL, Sjaastad K, Radomski MW, Volkov Y, Prina-Mello A. Magnetic nanoparticles in cancer theranostics. Theranostics. 2015;5(11):1249–63.CrossRefGoogle Scholar
  3. 3.
    Zoppellaro G, Kolokithas-Ntoukas A, Polakova K, Tucek J, Zboril R, Loudos G, et al. Theranostics of epitaxially condensed colloidal nanocrystal clusters, through a soft biomineralization route. Chem Mater. 2014;26:2062–74.CrossRefGoogle Scholar
  4. 4.
    Reddy VR. Gold nanoparticles: synthesis and applications. Synlett. 2006;2006(11):1791–2.  https://doi.org/10.1055/s-2006-944219.CrossRefGoogle Scholar
  5. 5.
    Li N, Zhao P, Astruc D. Anisotropic gold nanoparticles: synthesis, properties, applications, and toxicity. Angew Chem Int Ed. 2014;53:1756–89.CrossRefGoogle Scholar
  6. 6.
    Daniel MC, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev. 2004;104:293–346.CrossRefGoogle Scholar
  7. 7.
    Ghosh P, Han G, De M, Kim CK, Rotello VM. Gold nanoparticles in delivery applications. Adv Drug Deliv Rev. 2008;60:1307–15.CrossRefGoogle Scholar
  8. 8.
    Murphy CJ, Gole AM, Stone JW, Sisco PN, Alkilany AM, Goldsmith EC, et al. Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc Chem Res. 2008;41:1721–30.CrossRefGoogle Scholar
  9. 9.
    Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA. Gold nanoparticles for biology and medicine. Angew Chem. 2010;49(19):3280–94.CrossRefGoogle Scholar
  10. 10.
    Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA. The golden age: gold nanoparticles for biomedicine. Chem Soc Rev. 2012;41(7):2740–79.CrossRefGoogle Scholar
  11. 11.
    West JL, Halas NJ. Engineered nanomaterials for biophotonics applications: improving sensing, imaging, and therapeutics. Annu Rev Biomed Eng. 2003;5:285–92.CrossRefGoogle Scholar
  12. 12.
    Skrabalak SE, Au L, Li X, Xia Y. Facile synthesis of Ag nanocubes and Au nanocages. Nat Protoc. 2007;2(9):2182–90.CrossRefGoogle Scholar
  13. 13.
    Zhang J, Langille MR, Personick ML, Zhang K, Li S, Mirkin CA. Concave cubic gold nanocrystals with high index facets. J Am Chem Soc. 2010;132(40):14012–4.CrossRefGoogle Scholar
  14. 14.
    Millstone JE, Park S, Shuford KL, Qin L, Schatz GC, Mirkin CA. Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms. J Am Chem Soc. 2005;127(15):5312–3.CrossRefGoogle Scholar
  15. 15.
    Alkilany AM, Thompson LB, Boulos SP, Sisco PN, Murphy CJ. Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions. Adv Drug Deliv Rev. 2012;64:190–9.CrossRefGoogle Scholar
  16. 16.
    Kelly KL, Coronado E, Zhao LL, Schatz GC. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B. 2003;107(3):668–77.CrossRefGoogle Scholar
  17. 17.
    Huang X, Jain PK, El-Sayed IH, El-Sayed MA. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci. 2008;23:217–28.CrossRefGoogle Scholar
  18. 18.
    Ren F, Bhana S, Norman DD, Johnson J, Xu L, Baker DL, et al. Gold nanorods carrying paclitaxel for photothermal-chemotherapy of cancer. Bioconjug Chem. 2013;24:376–−386.CrossRefGoogle Scholar
  19. 19.
    Parida S, Maitib C, Kaushik R, Ipsita D, Parekha PA, Patrac R, et al. Gold nanorod embedded reduction responsive block copolymer micelle-triggered drug delivery combined with photothermal ablation for targeted cancer therapy. Biochim Biophys Acta Gen Subj. 2017;1861(1A):3039–52.CrossRefGoogle Scholar
  20. 20.
    Tu T-Y, Yang S-J, Wang C-H, Lee S-Y, Shieh M-J. HSA/PSS coated gold nanorods as thermo-triggered drug delivery vehicles for combined cancer photothermal therapy and chemotherapy, optical methods for tumor treatment and detection: mechanisms and techniques in photodynamic therapy XXVII San Francisco, Proceedings 2018;10476.  https://doi.org/10.1117/12.2289273
  21. 21.
    Sau TK, Murphy CJ. Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir. 2004;20(15):6414–20.CrossRefGoogle Scholar
  22. 22.
    Tas AC. Use of biomineralization media in biomimetic synthesis of hard tissue substitutes. In: McKittrick JM, Narayan R, editors. Advances in bioceramics and biotechnologies II. New York: Wiley; 2014. p. 92.Google Scholar
  23. 23.
    Mosmann T. Rapid colorimetric assay for cellular growth and survival: application of proliferation and cytotoxicity assay. J Immunol Methods. 1983;65:55–63.CrossRefGoogle Scholar
  24. 24.
    Nikoobakht B, El-Sayed MA. Preparation and growth mechanism of gold Nanorods (NRs) using seed-mediated growth method. Chem Mater. 2003;15:1957–62.CrossRefGoogle Scholar
  25. 25.
    Liu H, Pierre-Pierre N, Huo Q. Dynamic light scattering for gold nanorod size characterization and study of nanorod–protein interactions. Gold Bull. 2012;45:187–95.CrossRefGoogle Scholar
  26. 26.
    Yeh Y-C, Creran B, Rotello VM. Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale. 2012;4(6):1871–80.CrossRefGoogle Scholar
  27. 27.
    Murphy CJ, Gole A. Seed-mediated synthesis of gold nanorods: role of the size and nature of the seed. Chem Mater. 2004;16:3633–40.CrossRefGoogle Scholar
  28. 28.
    Lankveld DP, Rayavarapu RG, Krystek P, Oomen AG, Verharen HW, van Leeuwen TG, et al. Blood clearance and tissue distribution of PEGylated and non-PEGylated gold nanorods after intravenous administration in rats. Nanomedicine (London). 2011;6:339–49.CrossRefGoogle Scholar
  29. 29.
    Tong X, Wang Z, Sun X, Song J, Jacobson O, Niu G, et al. Size dependent kinetics of gold nanorods in EPR mediated tumor delivery. Theranostics. 2016;6(12):2039–51.CrossRefGoogle Scholar
  30. 30.
    Zwicke GL, Mansoori GA, Jeffery CJ. Utilizing the folate receptor for active targeting of cancer nanotherapeutics. Nano Rev. 2012;3:18496.  https://doi.org/10.3402/nano.v3i0.18496.CrossRefGoogle Scholar
  31. 31.
    Busbee BD, Obare SO, Murphy CJ. An improved synthesis of high aspect ratio gold nanorods. Adv Mater. 2003;15:414–6.CrossRefGoogle Scholar
  32. 32.
    He J, Unser S, Bruzas I, Cary R, Shi Z, Mehra R, et al. The facile removal of CTAB from the surface of gold nanorods. Colloids Surf B: Biointerfaces. 2018;163:140–5.CrossRefGoogle Scholar
  33. 33.
    Wang CG, Irudayaraj J. Gold nanorod probes detects multiple pathogens. Small. 2008;4:2204–8.CrossRefGoogle Scholar
  34. 34.
    Huang P, Bao L, Zhang C, Lin J, Luo T, Yang D, et al. Folic acid-conjugated silica-modified gold nanorods for x-ray/CT imaging-guided dual-mode radiation and photo-thermal therapy. Biomaterials. 2011;32:9796–809.CrossRefGoogle Scholar
  35. 35.
    De S, Klajn R. Dissipative self-assembly driven by the consumption of chemical fuels. Adv Mater. 2018;30:1706750.  https://doi.org/10.1002/adma.201706750.CrossRefGoogle Scholar
  36. 36.
    Maeda H, Bharate GY, Daruwalla J. Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur J Pharm Biopharm. 2009;71:409–19.CrossRefGoogle Scholar
  37. 37.
    Bhana S, O’Connor R, Johnson J, Ziebarth JD, Henderson L, Huang X. Photosensitizer-loaded gold nanorods for near infrared photodynamic and photothermal cancer therapy. J Colloid Interface Sci. 2016;469:8–16.CrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2018

Authors and Affiliations

  • Ligeri Papaioannou
    • 1
  • Athina Angelopoulou
    • 1
  • Sophia Hatziantoniou
    • 1
  • Maria Papadimitriou
    • 2
  • Panagiotis Apostolou
    • 2
  • Ioannis Papasotiriou
    • 2
  • Konstantinos Avgoustakis
    • 1
    Email author
  1. 1.Department of Pharmacy, School of Health SciencesUniversity of PatrasRioGreece
  2. 2.Research Genetic Cancer Centre S.A., Industrial Area of FlorinaFlorinaGreece

Personalised recommendations