Advertisement

AAPS PharmSciTech

, 20:9 | Cite as

In vitro SPF and Photostability Assays of Emulsion Containing Nanoparticles with Vegetable Extracts Rich in Flavonoids

  • Letícia Caramori CefaliEmail author
  • Janaína Artem Ataide
  • Samara Eberlin
  • Fernanda Cristina da Silva Gonçalves
  • Ana Rita Fernandes
  • Joana Marto
  • Helena Margarida Ribeiro
  • Mary Ann Foglio
  • Priscila Gava Mazzola
  • Eliana Barbosa SoutoEmail author
Research Article
  • 49 Downloads

Abstract

The aim of study was to determine the in vitro sun protection factor (SPF) and the photostability profile of a topical formulation composed of nanoparticles loaded with vegetable extracts and to assess its physicochemical properties. Chitosan/tripolyphosphate (TPP) nanoparticles loaded with flavonoids-enriched vegetable extracts (Ginkgo biloba L., Dimorphandra mollis Benth, Ruta graveolens, and Vitis vinifera L.) were produced and characterized for their morphology, mean particle size, zeta potential, and encapsulation efficiency. A final topical formulation was obtained by dispersing chitosan/TPP nanoparticles in an o/w emulsion. Results showed that nanoparticles dispersion exhibited yellowish color, spherical shape, and uniform appearance. Extract-loaded chitosan/TPP nanoparticles showed a mean particle size of 557.11 ± 3.1 nm, polydispersity index of 0.39 ± 0.27, zeta potential of + 11.54 ± 2.1 mV, and encapsulation efficiency of 75.89% of rutin. The recorded texture parameters confirm that the developed formulation is appropriate for skin application. The SPF obtained was 2.3 ± 0.4, with a critical wavelength of 387.0 nm and 0.69 UVA/UVB ratio. The developed formulation exhibited photostability, allowing the release of flavonoids from nanoparticles while retaining rutin into the skin in a higher extension.

KEY WORDS

flavonoids nanoparticles permeation photostability rutin sunscreen 

Notes

Acknowledgments

The authors acknowledge FAPESP (grant number 2015/25533-7 and 2017/14757-7), CAPES, and CNPq agencies for the financial support of this study. The authors also acknowledge the financial support received from the Portuguese Science and Technology Foundation (FCT/MCT) and from the European Funds (PRODER/COMPETE) under the project reference M-ERA-NET/0004/2015-PAIRED, co-financed by FEDER, under the Partnership Agreement PT2020.

Author Contribution Statement

LCC—carried out the assays, discussed results, and produced the manuscript.

JAA—carried assays, discussed results, and produced the manuscript.

SE—carried out photostability assay and reviewed the text.

FCdSG—carried out photostability assay and reviewed the text.

ARF—carried out texture assay and reviewed the text.

JM—carried out permeation assay and reviewed the text.

HMR—carried out permeation assay and reviewed the text.

MAF—co-advised students (Ms. Cefali and Ms. Ataide). Participated in plant extraction and identification of flavonoids, results discussion, and manuscript revision.

PGM—advised students (Ms. Cefali and Ms. Ataide), delineating assays, discussing results and producing/reviewing the manuscript. Participated in sun protector factor and antioxidant assays.

EBS—co-advised students (Ms. Cefali and Ms. Ataide). Participated in research outline, sun protector factor assays, results discussion, and manuscript revision.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12249_2018_1217_MOESM1_ESM.docx (15 kb)
ESM 1 (DOCX 15 kb)

References

  1. 1.
    Lindqvist PG, Epstein E, Nielsen K, Landin-Olsson M, Ingvar C, Olsson HJ. Avoidance of sun exposure as a risk factor for major causes of death: a competing risk analysis of the Melanoma in Southern Sweden cohort. J Int Med. 2016;280:375–87.CrossRefGoogle Scholar
  2. 2.
    Peres DD, De Oliveira CA, Da Costa MS, Tokunaga VK, Mota JP, Rosado C, et al. Rutin increases critical wavelength of systems containing a single UV filter and with good skin compatibility. Skin Res Technol. 2015;1:1–9.Google Scholar
  3. 3.
    Rojas J, Londono C, Ciro Y. The health benefits of natural skin UVA photoprotective compounds found in botanical sources. Int J Pharm Pharm Sci. 2016;8:13–23.Google Scholar
  4. 4.
    Lowe NJ, Shaath NA, Pathak MA. Sunscreens, development, evaluation and regulatory aspects. New York: Marcel Dekker; 1997.Google Scholar
  5. 5.
    Baron ED, Kirkland EB, Domingo DS. Advances in photo protection. Derm Nur. 2008;20:265–72.Google Scholar
  6. 6.
    Amar SK, Goyal S, Dubey D, Srivastav AK, Chopra D, Singh J, et al. Benzophenone 1 induced photogenotoxicity and apoptosis via release of cytochrome c and smac/diablo at environmental UV radiation. Toxicol Let. 2015;239:182–93.CrossRefGoogle Scholar
  7. 7.
    Ramos S, Homem V, Alves A, Santos L. A review of organic UV-filters in wastewater treatment plants. Environ Int. 2016;86:24–44.CrossRefGoogle Scholar
  8. 8.
    Cefali LC, Ataide JA, Foglio MA, Moriel P, Mazzola PG. Plant compounds as active photo protectants in sunscreens. Inter J Cosm Sci. 2016;1:1–8.Google Scholar
  9. 9.
    Feldman KA. Cytochrome P450s as genes for crop improvement. Curr Opin Plant Biol. 2001;4:162–7.CrossRefGoogle Scholar
  10. 10.
    Mann J. Secondary metabolism. Oxford: Clarendon Press; 1987.Google Scholar
  11. 11.
    Balogh TS, Velasco MVR, Pedriali CA, Kaneko TM, Baby AR. Ultraviolet radiation protection: current available resources in photoprotection. An Bras Dermatol. 2011;86:732–42.CrossRefGoogle Scholar
  12. 12.
    Tohge T, Souza LP, Fernie AR. Current understanding of the pathways of flavonoid biosynthesis in model and crop plants. J Exp Bot. 2017;68:4013–28.CrossRefGoogle Scholar
  13. 13.
    Hubinger SZ, Cefali LC, Vellosa JCR, Salgado HRN, Isaac VLB, Moreira RRD. Dimorphandra mollis: an alternative as a source of flavonoids with antioxidant action. Lat Am J Pharm. 2010;29:271–4.Google Scholar
  14. 14.
    Ajazuddin SS. Applications of novel drug delivery system for herbal formulations. Fitoterapia. 2010;81:680–9.CrossRefGoogle Scholar
  15. 15.
    Scalia S, Mezzena M. Photostabilization effect of quercetin on the UV filter combination, butyl methoxydibenzoylmethane-octyl methoxycinnamate. Photochem Photobiol. 2010;86:273–8.CrossRefGoogle Scholar
  16. 16.
    Michael H. Chemical product engineering—the third paradigm. Comput Chem Eng. 2009;33:947–53.CrossRefGoogle Scholar
  17. 17.
    Huong SP, Rocher E, Fourneron JD, Charles L, Monnier V, Bun H, et al. Photoreactivity of the sunscreen butylmethoxydibenzoylmethane under various experimental conditions. J Photochem Photobiol A. 2008;196:106–12.CrossRefGoogle Scholar
  18. 18.
    Romanhole RC, Ataide JA, Cefali LC, Moriel P, Mazzola P. Photostability study of commercial sunscreens submitted to artificial UV irradiation and/or fluorescent radiation. J Photochem Photobiol B Biol. 2016;162:45–9.CrossRefGoogle Scholar
  19. 19.
    Cefali LC, Ataide JA, Sousa IMO, Figueiredo MC, Ruiz ALTG, Souto EB, Foglio MA, Mazzola PG. Flavonoids enriched extract: validation of quantification method, in vitro SPF, antioxidant activity and cell viability. Saudi Pharmaceutical Journal, 2018 (submitted).Google Scholar
  20. 20.
    Hejjaji EM, Smith AM, Morris GA. Designing chitosan-tripolyphosphate microparticles with desired size for specific pharmaceutical or forensic applications. Int J Biol Macromol. 2017;95:564–73.CrossRefGoogle Scholar
  21. 21.
    Morris GA, Castile J, Smith A, Adams GG, Harding SE. The effect of prolonged storage at different temperatures on the particle size distribution of tripolyphosphate (TPP)-chitosan nanoparticles. Carbohydr Polym. 2011;84:1430–4.CrossRefGoogle Scholar
  22. 22.
    Azofeifa DE, Arguedas HJ, Vargas WE. Optical properties of chitin and chitosan biopolymers with application to structural color analysis. Opt Mater. 2012;35:175–83.CrossRefGoogle Scholar
  23. 23.
    Katas H, Raja MAG, Lam KL. Development of chitosan nanoparticles as a stable drug delivery system for protein/RNA. Inter J Biomat. 2013;2013:1–9.CrossRefGoogle Scholar
  24. 24.
    Seal T. Quantitative HPLC analysis of phenolic acids, flavonoids and ascorbic acid in four different solvent extracts of two wild edible leaves, Sonchus arvensis and Oenanthe linearis of north-eastern region in India. J Appl Pharm Sci. 2016;6:157–66.CrossRefGoogle Scholar
  25. 25.
    Martins JT, Cerqueira MA, Bourbon AI, Pinheiro AC, Souza BWS, Vicente AA. Synergistic effects between k-carrageenan and locust bean gum on physicochemical properties of edible films made thereof. Food Hydrocoll. 2012;29:280–9.CrossRefGoogle Scholar
  26. 26.
    Brazil’s National Health Surveillance Agency (ANVISA). Guia de estabilidade de produtos cosméticos. 2014. http://portal.anvisa.gov.br. Acessed 08 Jun 2018.
  27. 27.
    International Organization of Standardization (ISO). Guideline for the characterization of dispersion stability. 2013. https://www.iso.org/standard/52802.html. Accessed 20 Jun 2018.
  28. 28.
    Davis HM. Analysis of creams and lotions. In: Sezel AJ, editor. Newburger’s manual of cosmetic analysis. Washington: Association of Official Analytical Chemists; 1977. p. 32.Google Scholar
  29. 29.
    Idson B. Stability testing of emulsions. Drug Cosmet Ind. 1993;142:27–8.Google Scholar
  30. 30.
    Correa NM, Camargo Júnior FB, Ignácio RF, Leonardi GR. Avaliação do comportamento reológico de diferentes géis hidrofílicos. Braz J Pharm Sci. 2005;41:73–8.Google Scholar
  31. 31.
    Badolato GG, Aguilar F, Schuchmann HP, Sobisch T, Lerche D. Evaluation of long term stability of model emulsions by multisample analytical centrifugation. Progr Colloid Polym Sci. 2008;134:66–73.Google Scholar
  32. 32.
    Roland I, Piel G, Delattre L, Evrard B. Systematic characterization of oil-in- water emulsions for formulation design. Int J Pharm. 2003;16:85–94.CrossRefGoogle Scholar
  33. 33.
    Savary G, Grisel M, Picard C. Impact of emollients on the spreading properties of cosmetic products: a combined sensory and instrumental characterization. Coll Surf B Bioint. 2013;102:371–8.CrossRefGoogle Scholar
  34. 34.
    Estanqueiro M, Conceição J, Amaral MH, Santos D, Silva JB, Lobo JMS. Characterization and stability studies of emulsion systems containing pumice. Braz J Pharm Sci. 2014;50:361–9.CrossRefGoogle Scholar
  35. 35.
    International Organization of Standardization (ISO). Determination of sunscreen UVA photoprotection in vitro. 2012. https://www.iso.org/standard/46522.html. Accessed 15 Jun 2018.
  36. 36.
    Alencastre JB, Bentley MVLB, Garcia FS, Moragas M, Vilador JL, Marchetti JM. A study of the characteristics and in vitro permeation properties of CMC/chitosan microparticles as a skin delivery system for vitamin E. Rev Bras Ciênc Farm. 2006;42:69–76.CrossRefGoogle Scholar
  37. 37.
    Mansur MCPRP, Leitão SG, Cerqueira-Coutinho C, Vermelho AB, Presgrave AOF, Leitão AAC, et al. In vitro and in vivo evaluation of efficacy and safety of photoprotective formulations containing antioxidant extracts. Rev Bras Farmacog. 2016;26:251–8.CrossRefGoogle Scholar
  38. 38.
    Sinha VR, Singla AK, Wadhawan S, Kaushik R, Kumria R, Bansal K, et al. Chitosan microspheres as a potential carrier for drugs. Int J Pharm. 2004;274:1–33.CrossRefGoogle Scholar
  39. 39.
    Sezer AD, Akbuga J. Release characteristics of chitosan treated alginate beads: I. Sustained release of a macromolecular drug from chitosan treated alginate beads. J Microencapsul. 1999;16:195–203.CrossRefGoogle Scholar
  40. 40.
    Nallamuthu I, Devi A, Khanum F. Chlorogenic acid loaded chitosan nanoparticles with sustained release property, retained antioxidant activity and enhanced bioavailability. Asian J Pharm Sci. 2015;10:203–11.CrossRefGoogle Scholar
  41. 41.
    Kumari A, Yadav SK, Pakade YB, Singh B, Yadav SC. Development of biodegradable nanoparticle for delivery of quercetin. Coll Surf B. 2010;80:184–92.CrossRefGoogle Scholar
  42. 42.
    Rosa CG, Borges CD, Zambiazi RC, Nunes MR, Benvenutti EV, Da Luza SR, et al. Microencapsulation of gallic acid in chitosan, b-cyclodextrin and xanthan. Ind Crop Prod. 2013;46:138–46.CrossRefGoogle Scholar
  43. 43.
    Dube A, Nicolazzo JA, Larson I. Chitosan nanoparticle enhance the plasma exposure of e epigallocatechin gallate in mice through an enhancement in intestinal stability. Eur J Pharm Sci. 2011;44:422–6.CrossRefGoogle Scholar
  44. 44.
    Zou T, Percival SS, Cheng Q, Li Z, Rowe CA, Gu L. Preparation, characterization, and induction of cell apoptosis of cocoa procyanidins-gelatin-chitosan nanoparticle. Eur J Pharm Biopharm. 2012;82:36–42.CrossRefGoogle Scholar
  45. 45.
    Woranuch S, Yoksan R. Preparation, characterization and antioxidant property of water-soluble ferulic acid grafted chitosan. Carbohydr Polym. 2013;96:495–502.CrossRefGoogle Scholar
  46. 46.
    Liang D, Zhou Q, Gong W, Wang Y, Nie Z, He H, et al. Studies on the antioxidant and hepatoprotective activities of polysaccharides from Talinum triangulare. J Ethnopharmacol. 2011;136:316–21.CrossRefGoogle Scholar
  47. 47.
    Dyer AM, Hinchcliffe M, Watts P, Castile J, Jabbal-Gill I, Nankervis R, et al. Nasal delivery of insulin using novel chitosan-based formulations: a comparative study in two animal models between simple chitosan formulations and chitosan nanoparticles. Pharm Res. 2002;19:998–1008.CrossRefGoogle Scholar
  48. 48.
    Janes KA, Calvo P, Alonso MJ. Polysaccharide colloidal particles as delivery systems for macromolecules. Adv Drug Deliv Rev. 2001;47:83–97.CrossRefGoogle Scholar
  49. 49.
    Souto EB, Santana MHA. Chitosan cross-linked pentasodium tripolyphosphate micro/nanoparticles produced by ionotropic gelation. Sugar Tech. 2014;18:49–54.Google Scholar
  50. 50.
    Shu XZ, Zhu KJ. Novel approach to prepare tripolyphosphate/chitosan complex beads for controlled release drug delivery. Int J Pharm. 2000;201:51–8.CrossRefGoogle Scholar
  51. 51.
    Rampino A, Borgogna M, Blasi P, Bellich B, Cesaro A. Chitosan nanoparticles: preparation, size evolution and stability. Int J Pharm. 2013;455:219–28.CrossRefGoogle Scholar
  52. 52.
    Sailaja AK, Amareshwar P, Chakravarty P. Chitosan nanoparticles as a drug delivery system. Res J Pharm Biol Chem Sci. 2010;13:474–84.Google Scholar
  53. 53.
    Jose S, Fangueiro JF, Smitha J, Cinu TA, Chacko AJ, Premaletha K, et al. Cross-linked chitosan microspheres for oral delivery of insulin: Taguchi design and in vivo testing. Coll Surf B Biointer. 2012;92:175–9.CrossRefGoogle Scholar
  54. 54.
    Jose S, Fangueiro JF, Smitha J, Cinu TA, Chacko AJ, Premaletha K, et al. Predictive modeling of insulin release profile from cross-linked chitosan microspheres. Eur J Med Chem. 2013;60:249–53.CrossRefGoogle Scholar
  55. 55.
    Ibezim EC, Andrade CT, Marcia C, Barretto B, Odimegwu DC, de Lima FF. Ionically cross-linked chitosan/tripolyphosphate microparticles for the controlled delivery of pyrimethamine. J Med Biom Sci. 2011;3:77–88.Google Scholar
  56. 56.
    Gan Q, Wang T, Cochrane C, Mccarron P. Modulation of surface charge, particle size and morphological properties of chitosan-TPP nanoparticles intended for gene delivery. Coll Surf B Biointer. 2005;44:65–73.CrossRefGoogle Scholar
  57. 57.
    Li J, Huang Q. Rheological properties of chitosan–tripolyphosphate complexes: from suspensions to microgels. Carb Polym. 2012;87:1670–7.CrossRefGoogle Scholar
  58. 58.
    Hassani S, Laouini A, Fessi H, Charcosset C. Preparation of chitosan–TPP nanoparticles using microengineered membranes—effect of parameters and encapsulation of tacrine. Coll Surf A Phys Eng Asp. 2015;482:34–43.CrossRefGoogle Scholar
  59. 59.
    Chabib L, Martien R, Ismail H. Formulation of nanocurcumin using low viscosity chitosan polymer and its cellular uptake study into T47D cells. Indon J Pharm. 2001;23:27–35.Google Scholar
  60. 60.
    Sawtarie N, Cai Y, Lapitsky Y. Preparation of chitosan/tripolyphosphate nanoparticles with highly tunable size and low polydispersity. Coll Surf B Bioint. 2017;157:110–7.CrossRefGoogle Scholar
  61. 61.
    Kailaku SI, Mulyawanti I, Alamsyah AN. Formulation of nanoencapsulated catechin with chitosan as encapsulation material. Proc Chem. 2014;9:235–41.CrossRefGoogle Scholar
  62. 62.
    Mohammadpour DN, Eskandari R, Avadi MR, Zolfagharian H, Sadeghi AMM, Rezayat M. Preparation and in vitro characterization of chitosan nanoparticles containing Mesobuthus eupeus scorpion venom as an antigen delivery system. J Venom Anim Toxins Incl Trop Dis. 2012;18:44–52.Google Scholar
  63. 63.
    Servat-Medina L, González-Gómez A, Reyes-Ortega F, Sousa IMO, Queiroz NCA, Zago PMW, et al. Chitosan and tripolyphosphate nanoparticles as Arrabidaea chica standardized extract carrier: synthesis, characterization, biocompatibility, and antiulcerogenic activity. Inter J Nanomed. 2015;10:3897–909.CrossRefGoogle Scholar
  64. 64.
    Yu G, Morin FG, Nobes GAR, Marchessault RH. Degree of acetylationof chitin and extent of grafting PHB on chitosan determined by solid state NMR. Macromolecules. 1999;32:518–20.CrossRefGoogle Scholar
  65. 65.
    Shende PT, Yadava SK, Patil PS. Development and characterization of chitosan nanoparticles containing erthromycin estolate. Int J Pharm Appl. 2014;5:1–7.Google Scholar
  66. 66.
    Sanguetha J, Thangadurai D, Hospet R, Purushotaham P, Karekalammanavar G, Mundaragi AC, et al. Agricultural nanotechnology: concepts, benefits and risks. Singapore: Springer Nature Singapore Pte Ltd.; 2017.Google Scholar
  67. 67.
    Salar RK, Kumar N. Synthesis and characterization of vincristine loaded folic acid–chitosan conjugated nanoparticles. Resour Efficien Technol. 2016;2:199–214.CrossRefGoogle Scholar
  68. 68.
    Raab W, Kindl U. Pflegekosmetik. Stuttgart: Wissenschaflliche; 1999.Google Scholar
  69. 69.
    Figueiredo SA, Vilela FM, Da Silva CA, Cunha TM, Dos Santos MH, Fonseca MJ. In vitro and in vivo photoprotec tive/photochemopreventive potential of Garcinia brasiliensis epicarp extract. J Photochem Photobiol B. 2014;5:65–73.CrossRefGoogle Scholar
  70. 70.
    Veberic R, Jakopic J, Stampar F, Schmitzer V. European elderberry (Sambucus nigra L.) rich in sugars, organic acids, anthocyanins and selected polyphenols. Food Chem. 2009;114:511–5.CrossRefGoogle Scholar
  71. 71.
    Lerche D. Dispersion stability and particle characterization by sedimentation kinetics in a centrifugal field. J Disp Sci Technol. 2002;23:699–709.CrossRefGoogle Scholar
  72. 72.
    Wiacek AE, Chibowski E. Zeta potential and droplet size of n-tetradecane/ethanol (protein) emulsions. Coll Surf B: Biointer. 2002;25:55–67.CrossRefGoogle Scholar
  73. 73.
    Jeong YI, Cho CS, Kim SH, Ko KS, Kim SI, Shim YH, et al. Preparation of poly (DL-lactide –co-glycolide) nanoparticles without surfactant. J Appl Poly Sci. 2001;80:2228–36.CrossRefGoogle Scholar
  74. 74.
    Gilbert L, Picard C, Savary G, Grisel M. Rheological and textural characterization of cosmetic emulsions containing natural and synthetic polymers: relationships between both data. Coll Sur A. 2013;421:150–63.CrossRefGoogle Scholar
  75. 75.
    Toksoy MO, Tugcu-Demiröz F, Tirnaksiz F. Evaluation of rheological and textural properties of toothpastes. J Pharm Sci. 2013;38:135–41.Google Scholar
  76. 76.
    Colipa. Colipa Project Team IV. Method for the in vitro determination of UVA protection provided by sunscreen products. 2006.Google Scholar
  77. 77.
    Chuang SY, Lin CF, Wang PW, Chen EL, Fang JY. Elucidating the skin delivery of aglycone and glycoside flavonoids: how the structures affect cutaneous absorption. Nutrients. 2017;9:1298–304.CrossRefGoogle Scholar
  78. 78.
    Gupta R, Rai B. Penetration of gold nanoparticles through human skin: unraveling its mechanisms at the molecular scale. J Phys Chem B. 2016;120:7133–42.CrossRefGoogle Scholar
  79. 79.
    Han SB, Kwon SS, Jeong YM, Yu ER, Parl SN. Physical characterization and in vitro skin permeation of solid lipid nanoparticles for transdermal delivery of quercetin. Int J Cosmet Sci. 2014;36:588–97.CrossRefGoogle Scholar
  80. 80.
    Hojerová A, Medovcíková A, Mikula M. Photoprotective efficacy and photostability of fifteen sunscreen products having the same label SPF subjected to natural sunlight. Int J Pharm. 2011;408:27–38.CrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2018

Authors and Affiliations

  • Letícia Caramori Cefali
    • 1
    • 2
    Email author
  • Janaína Artem Ataide
    • 2
    • 3
  • Samara Eberlin
    • 4
  • Fernanda Cristina da Silva Gonçalves
    • 4
  • Ana Rita Fernandes
    • 2
  • Joana Marto
    • 5
  • Helena Margarida Ribeiro
    • 5
  • Mary Ann Foglio
    • 6
  • Priscila Gava Mazzola
    • 6
  • Eliana Barbosa Souto
    • 2
    • 7
    Email author
  1. 1.Institute of BiologyUniversity of Campinas (UNICAMP), Cidade Universitária “Zeferino Vaz”CampinasBrazil
  2. 2.Department of Pharmaceutical Technology, Faculty of PharmacyUniversity of Coimbra (FFUC)CoimbraPortugal
  3. 3.School of Medical SciencesUniversity of Campinas (UNICAMP)CampinasBrazil
  4. 4.Kosmoscience GroupCampinasBrazil
  5. 5.Research Institute for Medicines (iMed.ULisboa), Faculty of PharmacyUniversity of Lisbon (UL)LisbonPortugal
  6. 6.Faculty of Pharmaceutical SciencesUniversity of Campinas (UNICAMP)CampinasBrazil
  7. 7.CEB - Centre of Biological EngineeringUniversity of Minho, Campus de GualtarBragaPortugal

Personalised recommendations