AAPS PharmSciTech

, 20:1 | Cite as

Raman Spectroscopy for Process Analytical Technologies of Pharmaceutical Secondary Manufacturing

  • Brigitta Nagy
  • Attila Farkas
  • Enikő Borbás
  • Panna Vass
  • Zsombor Kristóf NagyEmail author
  • György Marosi
Review Article Theme: Advances in PAT, QbD, and Material Characterization
Part of the following topical collections:
  1. Theme: Advances in PAT, QbD, and Material Characterization


As the process analytical technology (PAT) mindset is progressively introduced and adopted by the pharmaceutical companies, there is an increasing demand for effective and versatile real-time analyzers to address the quality assurance challenges of drug manufacturing. In the last decades, Raman spectroscopy has emerged as one of the most promising tools for non-destructive and fast characterization of the pharmaceutical processes. This review summarizes the achieved results of the real-time application of Raman spectroscopy in the field of the secondary manufacturing of pharmaceutical solid dosage forms, covering the most common secondary process steps of a tablet production line. In addition, the feasibility of Raman spectroscopy for real-time control is critically reviewed, and challenges and possible approaches to moving from real-time monitoring to process analytically controlled technologies (PACT) are discussed.


Raman spectroscopy process analytical technology spectroscopy-based control secondary pharmaceutical manufacturing process analytically controlled technology 


Funding Information

This work was supported by the National Research, Development, and Innovation Fund of Hungary in the frame of FIEK_16-1-2016-0007 (Higher Education and Industrial Cooperation Center) and KH 124541, GINOP-2.1.7-15-2016-01301. The authors also acknowledge the ÚNKP-18-2-I New National Excellence Program of the Ministry of Human Capacities.


  1. 1.
    Food and Drug Administration. Guidance for industry: PAT—a framework for innovative pharmaceutical development, manufacturing, and quality assurance. 2004. Accessed 29 June 2018.
  2. 2.
    Sasic S, Ekins S. Pharmaceutical applications of Raman spectroscopy: Wiley; 2008.Google Scholar
  3. 3.
    Bakeev KA. Process analytical technology: spectroscopic tools and implementation strategies for the chemical and pharmaceutical industries: Wiley; 2010.Google Scholar
  4. 4.
    Teżyk M, Milanowski B, Ernst A, Lulek J. Recent progress in continuous and semi-continuous processing of solid oral dosage forms: a review. Drug Dev Ind Pharm. 2016;42(8):1195–214.PubMedGoogle Scholar
  5. 5.
    De Beer T, Burggraeve A, Fonteyne M, Saerens L, Remon JP, Vervaet C. Near infrared and Raman spectroscopy for the in-process monitoring of pharmaceutical production processes. Int J Pharm. 2011;417(1):32–47.PubMedGoogle Scholar
  6. 6.
    Rantanen J. Process analytical applications of Raman spectroscopy. J Pharm Pharmacol. 2007;59(2):171–7.PubMedGoogle Scholar
  7. 7.
    Esmonde-White KA, Cuellar M, Uerpmann C, Lenain B, Lewis IR. Raman spectroscopy as a process analytical technology for pharmaceutical manufacturing and bioprocessing. Anal Bioanal Chem. 2017;409(3):637–49.PubMedGoogle Scholar
  8. 8.
    Jung N, Windbergs M. Raman spectroscopy in pharmaceutical research and industry. Phys Sci Rev. 2018.
  9. 9.
    Brillouin L. Diffusion de la lumière et des rayons X par un corps transparent homogène. Influence de l’agitation thermique. Ann Phys. 1922;17:88–122.Google Scholar
  10. 10.
    Smekal A. Zur Quantentheorie der dispersion. Naturwissenschaften. 1923;11(43):873–5.Google Scholar
  11. 11.
    Raman CV, Krishnan KS. A new type of secondary radiation. Nature. 1928;121:501–2.Google Scholar
  12. 12.
    Smith E, Dent G. Modern Raman spectroscopy: a practical approach: John Wiley & Sons; 2013.Google Scholar
  13. 13.
    Das RS, Agrawal YK. Raman spectroscopy: recent advancements, techniques and applications. Vib Spectrosc. 2011;57(2):163–76.Google Scholar
  14. 14.
    Vankeirsbilck T, Vercauteren A, Baeyens W, Van der Weken G, Verpoort F, Vergote G, et al. Applications of Raman spectroscopy in pharmaceutical analysis. TrAC Trends Anal Chem. 2002;21(12):869–77.Google Scholar
  15. 15.
    Placzek G. The Rayleigh and Raman scattering. Handbuch der Radiologie. 1934;Vol 6 Part 2.Google Scholar
  16. 16.
    Schawlow AL, Townes CH. Infrared and optical masers. Phys Rev. 1958;112(6):1940–9.Google Scholar
  17. 17.
    Maiman TH. Stimulated optical radiation in ruby. Nature. 1960;187(4736):493–4.Google Scholar
  18. 18.
    Wikstrom H, Lewis IR, Taylor LS. Comparison of sampling techniques for in-line monitoring using Raman spectroscopy. Appl Spectrosc. 2005;59(7):934–41.PubMedGoogle Scholar
  19. 19.
    Lewis IR, Lewis ML. Fiber-optic probes for Raman spectrometry. Handbook of vibrational spectroscopy: John Wiley & Sons, Ltd.; 2006.Google Scholar
  20. 20.
    Ines L, Sebastian D, Christoph K, Benjamin D, Jürgen P. Fiber optic probes for linear and nonlinear Raman applications—current trends and future development. Laser Photonics Rev. 2013;7(5):698–731.Google Scholar
  21. 21.
    Franzen L, Windbergs M. Applications of Raman spectroscopy in skin research—from skin physiology and diagnosis up to risk assessment and dermal drug delivery. Adv Drug Deliv Rev. 2015;89:91–104.PubMedGoogle Scholar
  22. 22.
    Kim M, Chung H, Woo Y, Kemper M. New reliable Raman collection system using the wide area illumination (WAI) scheme combined with the synchronous intensity correction standard for the analysis of pharmaceutical tablets. Anal Chim Acta. 2006;579(2):209–16.PubMedGoogle Scholar
  23. 23.
    Matousek P, Parker A. Bulk Raman analysis of pharmaceutical tablets. Appl Spectrosc. 2006;60(12):1353–7.PubMedGoogle Scholar
  24. 24.
    Matousek P, Parker AW. Non-invasive probing of pharmaceutical capsules using transmission Raman spectroscopy. J Raman Spectrosc. 2007;38(5):563–7.Google Scholar
  25. 25.
    Buckley K, Matousek P. Recent advances in the application of transmission Raman spectroscopy to pharmaceutical analysis. J Pharm Biomed Anal. 2011;55(4):645–52.PubMedGoogle Scholar
  26. 26.
    Allan P, Bellamy LJ, Nordon A, Littlejohn D, Andrews J, Dallin P. In situ monitoring of powder blending by non-invasive Raman spectrometry with wide area illumination. J Pharm Biomed Anal. 2013;76:28–35.PubMedGoogle Scholar
  27. 27.
    Lee S-H, Lee J-H, Cho S, Do S-H, Woo Y-A. End point determination of blending process for trimebutine tablets using principle component analysis (PCA) and partial least squares (PLS) regression. Arch Pharm Res. 2012;35(9):1599–607.PubMedGoogle Scholar
  28. 28.
    Vergote GJ, De Beer TRM, Vervaet C, Remon JP, Baeyens WRG, Diericx N, et al. In-line monitoring of a pharmaceutical blending process using FT-Raman spectroscopy. Eur J Pharm Sci. 2004;21(4):479–85.PubMedGoogle Scholar
  29. 29.
    Hausman DS, Cambron RT, Sakr A. Application of Raman spectroscopy for on-line monitoring of low dose blend uniformity. Int J Pharm. 2005;298(1):80–90.PubMedGoogle Scholar
  30. 30.
    Riolo D, Piazza A, Cottini C, Serafini M, Lutero E, Cuoghi E, et al. Raman spectroscopy as a PAT for pharmaceutical blending: advantages and disadvantages. J Pharm Biomed Anal. 2018;149(Supplement C):329–34.PubMedGoogle Scholar
  31. 31.
    De Beer TRM, Bodson C, Dejaegher B, Walczak B, Vercruysse P, Burggraeve A, et al. Raman spectroscopy as a process analytical technology (PAT) tool for the in-line monitoring and understanding of a powder blending process. J Pharm Biomed Anal. 2008;48(3):772–9.PubMedGoogle Scholar
  32. 32.
    Nagy B, Farkas A, Gyürkés M, Komaromy-Hiller S, Démuth B, Szabó B, et al. In-line Raman spectroscopic monitoring and feedback control of a continuous twin-screw pharmaceutical powder blending and tableting process. Int J Pharm. 2017;530(1):21–9.PubMedGoogle Scholar
  33. 33.
    McAuliffe MAP, O’Mahony GE, Blackshields CA, Collins JA, Egan DP, Kiernan L, et al. The use of PAT and off-line methods for monitoring of roller compacted ribbon and granule properties with a view to continuous processing. Org Process Res Dev. 2015;19(1):158–66.Google Scholar
  34. 34.
    Jørgensen A, Rantanen J, Karjalainen M, Khriachtchev L, Räsänen E, Yliruusi J. Hydrate formation during wet granulation studied by spectroscopic methods and multivariate analysis. Pharm Res. 2002;19(9):1285–91.PubMedGoogle Scholar
  35. 35.
    Wikström H, Marsac PJ, Taylor LS. In-line monitoring of hydrate formation during wet granulation using Raman spectroscopy. J Pharm Sci. 2005;94(1):209–19.PubMedGoogle Scholar
  36. 36.
    Christensen NPA, Cornett C, Rantanen J. Role of excipients on solid-state properties of piroxicam during processing. J Pharm Sci. 2012;101(3):1202–11.PubMedGoogle Scholar
  37. 37.
    Reddy JP, Jones JW, Wray PS, Dennis AB, Brown J, Timmins P. Monitoring of multiple solvent induced form changes during high shear wet granulation and drying processes using online Raman spectroscopy. Int J Pharm. 2018;541(1):253–60.PubMedGoogle Scholar
  38. 38.
    Fonteyne M, Vercruysse J, Díaz DC, Gildemyn D, Vervaet C, Remon JP, et al. Real-time assessment of critical quality attributes of a continuous granulation process. Pharm Dev Technol. 2013;18(1):85–97.PubMedGoogle Scholar
  39. 39.
    Fonteyne M, Soares S, Vercruysse J, Peeters E, Burggraeve A, Vervaet C, et al. Prediction of quality attributes of continuously produced granules using complementary pat tools. Eur J Pharm Biopharm. 2012;82(2):429–36.PubMedGoogle Scholar
  40. 40.
    Harting J, Kleinebudde P. Development of an in-line Raman spectroscopic method for continuous API quantification during twin-screw wet granulation. Eur J Pharm Biopharm. 2018;125:169–81.PubMedGoogle Scholar
  41. 41.
    Hausman DS, Cambron RT, Sakr A. Application of on-line Raman spectroscopy for characterizing relationships between drug hydration state and tablet physical stability. Int J Pharm. 2005;299(1):19–33.PubMedGoogle Scholar
  42. 42.
    Otaki T, Tanabe Y, Kojima T, Miura M, Ikeda Y, Koide T, et al. In situ monitoring of cocrystals in formulation development using low-frequency Raman spectroscopy. Int J Pharm. 2018;542(1):56–65.PubMedGoogle Scholar
  43. 43.
    Walker GM, Bell SEJ, Greene K, Jones DS, Andrews GP. Characterisation of fluidised bed granulation processes using in-situ Raman spectroscopy. Chem Eng Sci. 2009;64(1):91–8.Google Scholar
  44. 44.
    Almeida A, Saerens L, De Beer T, Remon JP, Vervaet C. Upscaling and in-line process monitoring via spectroscopic techniques of ethylene vinyl acetate hot-melt extruded formulations. Int J Pharm. 2012;439(1):223–9.PubMedGoogle Scholar
  45. 45.
    Saerens L, Ghanam D, Raemdonck C, Francois K, Manz J, Krüger R, et al. In-line solid state prediction during pharmaceutical hot-melt extrusion in a 12 mm twin screw extruder using Raman spectroscopy. Eur J Pharm Biopharm. 2014;87(3):606–15.PubMedGoogle Scholar
  46. 46.
    Saerens L, Segher N, Vervaet C, Remon JP, De Beer T. Validation of an in-line Raman spectroscopic method for continuous active pharmaceutical ingredient quantification during pharmaceutical hot-melt extrusion. Anal Chim Acta. 2014;806:180–7.PubMedGoogle Scholar
  47. 47.
    Netchacovitch L, Thiry J, De Bleye C, Dumont E, Cailletaud J, Sacré PY, et al. Global approach for the validation of an in-line Raman spectroscopic method to determine the API content in real-time during a hot-melt extrusion process. Talanta. 2017;171:45–52.PubMedGoogle Scholar
  48. 48.
    Saerens L, Vervaet C, Remon J-P, De Beer T. Visualization and process understanding of material behavior in the extrusion barrel during a hot-melt extrusion process using Raman spectroscopy. Anal Chem. 2013;85(11):5420–9.PubMedGoogle Scholar
  49. 49.
    Griffen JA, Owen AW, Matousek P. Quantifying low levels (< 0.5% w/w) of warfarin sodium salts in oral solid dose forms using transmission Raman spectroscopy. J Pharm Biomed Anal. 2018;155:276–83.PubMedGoogle Scholar
  50. 50.
    Townshend N, Nordon A, Littlejohn D, Myrick M, Andrews J, Dallin P. Comparison of the determination of a low-concentration active ingredient in pharmaceutical tablets by backscatter and transmission Raman spectrometry. Anal Chem. 2012;84(11):4671–6.PubMedGoogle Scholar
  51. 51.
    Gómez DA, Coello J, Maspoch S. Raman spectroscopy for the analytical quality control of low-dose break-scored tablets. J Pharm Biomed Anal. 2016;124:207–15.PubMedGoogle Scholar
  52. 52.
    Peeters E, Tavares da Silva AF, Toiviainen M, Van Renterghem J, Vercruysse J, Juuti M, et al. Assessment and prediction of tablet properties using transmission and backscattering Raman spectroscopy and transmission NIR spectroscopy. Asian J Pharm Sci. 2016;11(4):547–58.Google Scholar
  53. 53.
    Casian T, Reznek A, Vonica-Gligor AL, Van Renterghem J, De Beer T, Tomuță I. Development, validation and comparison of near infrared and Raman spectroscopic methods for fast characterization of tablets with amlodipine and valsartan. Talanta. 2017;167:333–43.PubMedGoogle Scholar
  54. 54.
    Virtanen S, Antikainen O, Yliruusi J. Determination of the crushing strength of intact tablets using Raman spectroscopy. Int J Pharm. 2008;360(1):40–6.PubMedGoogle Scholar
  55. 55.
    Nagy B, Farkas A, Magyar K, Démuth B, Nagy ZK, Marosi G. Spectroscopic characterization of tablet properties in a continuous powder blending and tableting process. Eur J Pharm Sci. 2018;123:10–9.PubMedGoogle Scholar
  56. 56.
    Kim B, Woo Y-A. Coating process optimization through in-line monitoring for coating weight gain using Raman spectroscopy and design of experiments. J Pharm Biomed Anal. 2018;154:278–84.PubMedGoogle Scholar
  57. 57.
    Hisazumi J, Kleinebudde P. In-line monitoring of multi-layered film-coating on pellets using Raman spectroscopy by MCR and PLS analyses. Eur J Pharm Biopharm. 2017;114:194–201.PubMedGoogle Scholar
  58. 58.
    Barimani S, Kleinebudde P. Evaluation of in-line Raman data for end-point determination of a coating process: comparison of science-based calibration, PLS-regression and univariate data analysis. Eur J Pharm Biopharm. 2017;119:28–35.PubMedGoogle Scholar
  59. 59.
    Romero-Torres S, Pérez-Ramos JD, Morris KR, Grant ER. Raman spectroscopic measurement of tablet-to-tablet coating variability. J Pharm Biomed Anal. 2005;38(2):270–4.PubMedGoogle Scholar
  60. 60.
    Nikowitz K, Folttmann F, Wirges M, Knop K, Pintye-Hódi K, Regdon G, et al. Development of a Raman method to follow the evolution of coating thickness of pellets. Drug Dev Ind Pharm. 2014;40(8):1005–10.PubMedGoogle Scholar
  61. 61.
    Kauffman JF, Dellibovi M, Cunningham CR. Raman spectroscopy of coated pharmaceutical tablets and physical models for multivariate calibration to tablet coating thickness. J Pharm Biomed Anal. 2007;43(1):39–48.PubMedGoogle Scholar
  62. 62.
    Barimani S, Kleinebudde P. Monitoring of tablet coating processes with colored coatings. Talanta. 2018;178:686–97.PubMedGoogle Scholar
  63. 63.
    Müller J, Knop K, Thies J, Uerpmann C, Kleinebudde P. Feasibility of Raman spectroscopy as PAT tool in active coating. Drug Dev Ind Pharm. 2010;36(2):234–43.PubMedGoogle Scholar
  64. 64.
    Müller J, Knop K, Wirges M, Kleinebudde P. Validation of Raman spectroscopic procedures in agreement with ICH guideline Q2 with considering the transfer to real time monitoring of an active coating process. J Pharm Biomed Anal. 2010;53(4):884–94.PubMedGoogle Scholar
  65. 65.
    El Hagrasy AS, Chang S-Y, Desai D, Kiang S. Raman spectroscopy for the determination of coating uniformity of tablets: assessment of product quality and coating pan mixing efficiency during scale-up. J Pharm Innov. 2006;1(1):37–42.Google Scholar
  66. 66.
    Wirges M, Funke A, Serno P, Knop K, Kleinebudde P. Development and in-line validation of a process analytical technology to facilitate the scale up of coating processes. J Pharm Biomed Anal. 2013;78–79:57–64.PubMedGoogle Scholar
  67. 67.
    Bogomolov A, Engler M, Melichar M, Wigmore A. In-line analysis of a fluid bed pellet coating process using a combination of near infrared and Raman spectroscopy. J Chemom. 2010;24(7–8):544–57.Google Scholar
  68. 68.
    Barimani S, Šibanc R, Kleinebudde P. Optimization of a semi-batch tablet coating process for a continuous manufacturing line by design of experiments. Int J Pharm. 2018;539(1):95–103.PubMedGoogle Scholar
  69. 69.
    Chakravarty P, Bhardwaj SP, King L, Suryanarayanan R. Monitoring phase transformations in intact tablets of trehalose by FT-Raman spectroscopy. AAPS PharmSciTech. 2009;10(4):1420–6.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Takeshima R, Hattori Y, Managaki S, Otsuka M. Analysis of the dehydration process of caffeine using backscattering and transmission Raman spectroscopy. Int J Pharm. 2017;530(1):256–62.PubMedGoogle Scholar
  71. 71.
    Eliasson C, Matousek P. Noninvasive authentication of pharmaceutical products through packaging using spatially offset Raman spectroscopy. Anal Chem. 2007;79(4):1696–701.PubMedGoogle Scholar
  72. 72.
    Lyndgaard LB, van den Berg F, de Juan A. Quantification of paracetamol through tablet blister packages by Raman spectroscopy and multivariate curve resolution-alternating least squares. Chemom Intell Laby Syst. 2013;125(Complete):58–66.Google Scholar
  73. 73.
    Yu LX, Amidon G, Khan MA, Hoag SW, Polli J, Raju GK, et al. Understanding pharmaceutical quality by design. AAPS J. 2014;16(4):771–83.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Cullen PJ, RomaÃnach RJ, Abatzoglou N, Rielly CD. Pharmaceutical blending and mixing: John Wiley & Sons; 2015.Google Scholar
  75. 75.
    Fonteyne M, Vercruysse J, De Leersnyder F, Van Snick B, Vervaet C, Remon JP, et al. Process analytical technology for continuous manufacturing of solid-dosage forms. TrAC Trends Anal Chem. 2015;67:159–66.Google Scholar
  76. 76.
    Suresh P, Sreedhar I, Vaidhiswaran R, Venugopal A. A comprehensive review on process and engineering aspects of pharmaceutical wet granulation. Chem Eng J. 2017;328(Supplement C):785–815.Google Scholar
  77. 77.
    Burggraeve A, Monteyne T, Vervaet C, Remon JP, Beer TD. Process analytical tools for monitoring, understanding, and control of pharmaceutical fluidized bed granulation: a review. Eur J Pharm Biopharm. 2013;83(1):2–15.PubMedGoogle Scholar
  78. 78.
    Thompson MR, Sun J. Wet granulation in a twin-screw extruder: implications of screw design. J Pharm Sci. 2010;99(4):2090–103.PubMedGoogle Scholar
  79. 79.
    Hitzer P, Bäuerle T, Drieschner T, Ostertag E, Paulsen K, van Lishaut H, et al. Process analytical techniques for hot-melt extrusion and their application to amorphous solid dispersions. Anal Bioanal Chem. 2017;409(18):4321–33.PubMedGoogle Scholar
  80. 80.
    Saerens L, Vervaet C, Remon JP, De Beer T. Process monitoring and visualization solutions for hot-melt extrusion: a review. J Pharm Pharmacol. 2014;66(2):180–203.PubMedGoogle Scholar
  81. 81.
    De Leersnyder F, Peeters E, Djalabi H, Vanhoorne V, Van Snick B, Hong K, et al. Development and validation of an in-line NIR spectroscopic method for continuous blend potency determination in the feed frame of a tablet press. J Pharm Biomed Anal. 2018;151:274–83.PubMedGoogle Scholar
  82. 82.
    Karande AD, Heng PWS, Liew CV. In-line quantification of micronized drug and excipients in tablets by near infrared (NIR) spectroscopy: real time monitoring of tabletting process. Int J Pharm. 2010;396(1):63–74.PubMedGoogle Scholar
  83. 83.
    Järvinen K, Hoehe W, Järvinen M, Poutiainen S, Juuti M, Borchert S. In-line monitoring of the drug content of powder mixtures and tablets by near-infrared spectroscopy during the continuous direct compression tableting process. Eur J Pharm Sci. 2013;48(4–5):680–8.PubMedGoogle Scholar
  84. 84.
    Knop K, Kleinebudde P. PAT-tools for process control in pharmaceutical film coating applications. Int J Pharm. 2013;457(2):527–36.PubMedGoogle Scholar
  85. 85.
    Korasa K, Vrečer F. Overview of PAT process analysers applicable in monitoring of film coating unit operations for manufacturing of solid oral dosage forms. Eur J Pharm Sci. 2018;111:278–92.PubMedGoogle Scholar
  86. 86.
    Wulff R, Leopold CS. Coatings of Eudragit® RL and L-55 blends: investigations on the drug release mechanism. AAPS PharmSciTech. 2016;17(2):493–503.PubMedGoogle Scholar
  87. 87.
    da Silva CAM, Butzge JJ, Nitz M, Taranto OP. Monitoring and control of coating and granulation processes in fluidized beds—a review. Adv Powder Technol. 2014;25(1):195–210.Google Scholar
  88. 88.
    European Medical Agency. 2012. Guideline on real time release testing (formerly Guideline on parametric release). Accessed 29 June 2018.
  89. 89.
    Pestieau A, Krier F, Thoorens G, Dupont A, Chavez P-F, Ziemons E, et al. Towards a real time release approach for manufacturing tablets using NIR spectroscopy. J Pharm Biomed Anal. 2014;98(Supplement C):60–7.PubMedGoogle Scholar
  90. 90.
    Vargas JM, Nielsen S, Cárdenas V, Gonzalez A, Aymat EY, Almodovar E, et al. Process analytical technology in continuous manufacturing of a commercial pharmaceutical product. Int J Pharm. 2018;538(1–2):167–78.PubMedGoogle Scholar
  91. 91.
    Kourti T. Process analytical technology beyond real-time analyzers: the role of multivariate analysis. Crit Rev Anal Chem. 2006;36(3–4):257–78.Google Scholar
  92. 92.
    Singh R, Sahay A, Muzzio F, Ierapetritou M, Ramachandran R. A systematic framework for onsite design and implementation of a control system in a continuous tablet manufacturing process. Comput Chem Eng. 2014;66:186–200.Google Scholar
  93. 93.
    SIMATIC SIPAT. The software heart of PAT; White paper. Siemens AG.Google Scholar
  94. 94.
    Markl D, Wahl PR, Menezes JC, Koller DM, Kavsek B, Francois K, et al. Supervisory control system for monitoring a pharmaceutical hot melt extrusion process. AAPS PharmSciTech. 2013;14(3):1034–44.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Nicolaï N, De Leersnyder F, Copot D, Stock M, Ionescu CM, Gernaey KV, et al. Liquid-to-solid ratio control as an advanced process control solution for continuous twin-screw wet granulation. AICHE J. 2018;64:2500–14.Google Scholar
  96. 96.
    Zacour BM, Drennen JK, Anderson CA. Development of a statistical tolerance-based fluid bed drying design space. J Pharm Innov. 2012;7(3):151–62.Google Scholar
  97. 97.
    Csontos I, Pataki H, Farkas A, Bata H, Vajna B, Nagy ZK, et al. Feedback control of oximation reaction by inline Raman spectroscopy. Org Process Res Dev. 2015;19(1):189–95.Google Scholar
  98. 98.
    Djuris J, Djuric Z. Modeling in the quality by design environment: regulatory requirements and recommendations for design space and control strategy appointment. Int J Pharm. 2017;533(2):346–56.PubMedGoogle Scholar
  99. 99.
    Matero S, Fv DB, Poutiainen S, Rantanen J, Pajander J. Towards better process understanding: chemometrics and multivariate measurements in manufacturing of solid dosage forms. J Pharm Sci. 2013;102(5):1385–403.PubMedGoogle Scholar
  100. 100.
    Chen Z, Lovett D, Morris J. Process analytical technologies and real time process control a review of some spectroscopic issues and challenges. J Process Control. 2011;21(10):1467–82.Google Scholar
  101. 101.
    Pataki H, Csontos I, Nagy ZK, Vajna B, Molnar M, Katona L, et al. Implementation of Raman signal feedback to perform controlled crystallization of carvedilol. Org Process Res Dev. 2013;17(3):493–9.Google Scholar
  102. 102.
    Hirsch E, Pataki H, Farkas A, Bata H, Vass P, Fehér C, et al. Raman-based feedback control of the enzymatic hydrolysis of lactose. Org Process Res Dev. 2016;20(10):1721–7.Google Scholar
  103. 103.
    Matthews TE, Berry BN, Smelko J, Moretto J, Moore B, Wiltberger K. Closed loop control of lactate concentration in mammalian cell culture by Raman spectroscopy leads to improved cell density, viability, and biopharmaceutical protein production. Biotechnol Bioeng. 2016;113(11):2416–24.PubMedGoogle Scholar
  104. 104.
    Craven S, Whelan J, Glennon B. Glucose concentration control of a fed-batch mammalian cell bioprocess using a nonlinear model predictive controller. J Process Control. 2014;24(4):344–57.Google Scholar
  105. 105.
    Voss J-P, Mittelheuser NE, Lemke R, Luttmann R. Advanced monitoring and control of pharmaceutical production processes with Pichia pastoris by using Raman spectroscopy and multivariate calibration methods. Eng Life Sci. 2017;17(12):1281–94.Google Scholar
  106. 106.
    Singh R, Barrasso D, Chaudhury A, Sen M, Ierapetritou M, Ramachandran R. Closed-loop feedback control of a continuous pharmaceutical tablet manufacturing process via wet granulation. J Pharm Innov. 2014;9(1):16–37.Google Scholar
  107. 107.
    Singh R, Sahay A, Karry KM, Muzzio F, Ierapetritou M, Ramachandran R. Implementation of an advanced hybrid MPC–PID control system using PAT tools into a direct compaction continuous pharmaceutical tablet manufacturing pilot plant. Int J Pharm. 2014;473(1–2):38–54.PubMedGoogle Scholar
  108. 108.
    Hattori Y, Otsuka M. Modeling of feed-forward control using the partial least squares regression method in the tablet compression process. Int J Pharm. 2017;524(1):407–13.PubMedGoogle Scholar
  109. 109.
    Su Q, Moreno M, Giridhar A, Reklaitis GV, Nagy ZK. A systematic framework for process control design and risk analysis in continuous pharmaceutical solid-dosage manufacturing. J Pharm Innov. 2017;12(4):327–46.Google Scholar
  110. 110.
    Kourti T, Lepore J, Liesum L, Nasr M, Chatterjee S, Moore CM, et al. Scientific and regulatory considerations for implementing mathematical models in the quality by design (QbD) framework. Pharm Eng. 2014;34(6).Google Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2018

Authors and Affiliations

  • Brigitta Nagy
    • 1
  • Attila Farkas
    • 1
  • Enikő Borbás
    • 1
  • Panna Vass
    • 1
  • Zsombor Kristóf Nagy
    • 1
    Email author
  • György Marosi
    • 1
  1. 1.Department of Organic Chemistry and TechnologyBudapest University of Technology and EconomicsBudapestHungary

Personalised recommendations