AAPS PharmSciTech

, Volume 19, Issue 8, pp 3561–3570 | Cite as

Physicochemical and In Vitro Evaluation of Drug Delivery of an Antibacterial Synthetic Benzophenone in Biodegradable PLGA Nanoparticles

  • Gabriella Costabile
  • Kathrin I. Gasteyer
  • Venkatereddy Nadithe
  • Katherine Van Denburgh
  • Qian Lin
  • Shiv Sharma
  • Joshua J. Reineke
  • Steven M. Firestine
  • Olivia M. MerkelEmail author
Research Article Theme: Translational Multi-Disciplinary Approach for the Drug and Gene Delivery Systems
Part of the following topical collections:
  1. Theme: Translational Multi-Disciplinary Approach for the Drug and Gene Delivery Systems


Due to the increasing incidents of antimicrobial-resistant pathogens, the development of new antibiotics and their efficient formulation for suitable administration is crucial. Currently, one group of promising antimicrobial compounds are the benzophenone tetra-amides which show good activity even against gram-positive, drug-resistant pathogens. These compounds suffer from poor water solubility and bioavailability. It is therefore important to develop dosage forms which can address this disadvantage while also maintaining efficacy and potentially generating long-term exposures to minimize frequent dosing. Biodegradable nanoparticles provide one solution, and we describe here the encapsulation of the experimental benzophenone-based antibiotic, SV7. Poly-lactic-co-glycolic-acid (PLGA) nanoparticles were optimized for their physicochemical properties, their encapsulation efficiency, sustained drug release as well as antimicrobial activity. The optimized formulation contained particles smaller than 200 nm with a slightly negative zeta potential which released 39% of their drug load over 30 days. This formulation maintains the antibacterial activity of SV7 while minimizing the impact on mammalian cells.


benzophenone antibiotics PLGA nanoparticles sustained release poorly water-soluble drug 



OMM acknowledges the Wayne State University Start-Up grant and Innovation Fellowship grant. SMF acknowledges NIH grant R01AI109139 for support. GC acknowledges UniNa and Compagnia San Paolo in the frame of Programme STAR (CALL 2016). The Electron Microscopy Core Facility at Wayne State University is partially supported by NSF-MRI grant 0216084 and NSF-MRI grant 0922912. We are grateful to Dr. Zhi Mei for expert support with the SEM imaging of our samples.


  1. 1.
    Fleming A. On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae. 1929. Bull World Health Organ. 2001;79(8):780–90.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. P & T : a peer-reviewed journal for formulary management. 2015;40(4):277–83.Google Scholar
  3. 3.
    Centers for Diseases Control and Prevention OoID. Antibiotic resistance threats in the United States, 2013. 2013. Available from:
  4. 4.
    World Health Organization. Worldwide country situation analysis: response to antimicrobial resistance 2015. Available from:
  5. 5.
    Ciofu O, Tolker-Nielsen T, Jensen PO, Wang H, Hoiby N. Antimicrobial resistance, respiratory tract infections and role of biofilms in lung infections in cystic fibrosis patients. Adv Drug Deliv Rev. 2015;85:7–23.CrossRefPubMedGoogle Scholar
  6. 6.
    Spellberg B. The future of antibiotics. Critical care (London, England) 2014;18(3):228.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Iinuma M, Tosa H, Tanaka T, Kanamaru S, Asai F, Kobayashi Y, et al. Antibacterial activity of some Garcinia benzophenone derivatives against methicillin-resistant Staphylococcus aureus. Biol Pharm Bull. 1996;19(2):311–4.CrossRefPubMedGoogle Scholar
  8. 8.
    Lokvam J, Braddock JF, Reichardt PB, Clausen TP. Two polyisoprenylated benzophenones from the trunk latex of Clusia grandiflora (Clusiaceae). Phytochemistry. 2000;55(1):29–34.CrossRefPubMedGoogle Scholar
  9. 9.
    Trusheva B, Popova M, Naydenski H, Tsvetkova I, Gregorio Rodriguez J, Bankova V. New polyisoprenylated benzophenones from Venezuelan propolis. Fitoterapia. 2004;75(7–8):683–9.CrossRefPubMedGoogle Scholar
  10. 10.
    Tantapakul C, Phakhodee W, Ritthiwigrom T, Cheenpracha S, Prawat U, Deachathai S, et al. Rearranged benzophenones and prenylated xanthones from Garcinia propinqua twigs. J Nat Prod. 2012;75(9):1660–4.CrossRefPubMedGoogle Scholar
  11. 11.
    Trisuwan K, Ritthiwigrom T. Benzophenone and xanthone derivatives from the inflorescences of Garcinia cowa. Arch Pharm Res. 2012;35(10):1733–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Khanum SA, Shashikanth S, Sudha BS. A facile synthesis and antimicrobial activity of 3-(2-aroylaryloxy)methyl-5-mercapto-4-phenyl-4H-1,2,4-triazole and 2-(2-aroylaryloxy)methyl-5-N-phenylamino-1,3,4-thiadiazole analogues. ScienceAsia. 2003;29:383–92.CrossRefGoogle Scholar
  13. 13.
    Khanum SA, Shashikanth S, Umesha S, Kavitha R. Synthesis and antimicrobial study of novel heterocyclic compounds from hydroxybenzophenones. Eur J Med Chem. 2005;40(11):1156–62.CrossRefPubMedGoogle Scholar
  14. 14.
    Organization. WH. Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics 2017. Available from:
  15. 15.
    Baldan R, Cigana C, Testa F, Bianconi I, De Simone M, Pellin D, et al. Adaptation of Pseudomonas aeruginosa in cystic fibrosis airways influences virulence of Staphylococcus aureus in vitro and murine models of co-infection. PLoS One. 2014;9(3):e89614.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Vooturi SK, Cheung CM, Rybak MJ, Firestine SM. Design, synthesis, and structure-activity relationships of benzophenone-based tetraamides as novel antibacterial agents. J Med Chem. 2009;52(16):5020–31.CrossRefPubMedGoogle Scholar
  17. 17.
    Vooturi SK, Dewal MB, Firestine SM. Examination of a synthetic benzophenone membrane-targeted antibiotic. Org Biomol Chem. 2011;9(18):6367–72.CrossRefPubMedGoogle Scholar
  18. 18.
    Vooturi SK, Firestine SM. Solution-phase parallel synthesis of novel membrane-targeted antibiotics. J Comb Chem. 2010;12(1):151–60.CrossRefPubMedGoogle Scholar
  19. 19.
    Lipinski CA. Avoiding investment in doomed drugs, is poor solubility an industry wide problem? Curr Drug Discov. 2001:17–9.Google Scholar
  20. 20.
    Company BDa. BBL TM Mueller Hinton II Broth (Cation Adjusted). Rev 12 [Internet]. 2012.Google Scholar
  21. 21.
    Institute CaLS. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard. CLSI document M07-A9. Wayne, PA: Clinical and Laboratory Standards Institute; 2012.Google Scholar
  22. 22.
    Merkel OM, Beyerle A, Beckmann BM, Zheng M, Hartmann RK, Stoger T, et al. Polymer-related off-target effects in non-viral siRNA delivery. Biomaterials. 2011;32(9):2388–98.CrossRefPubMedGoogle Scholar
  23. 23.
    Sahoo SK, Panyam J, Prabha S, Labhasetwar V. Residual polyvinyl alcohol associated with poly (D,L-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake. J Control Release. 2002;82(1):105–14.CrossRefPubMedGoogle Scholar
  24. 24.
    Khattak SF, Bhatia SR, Roberts SC. Pluronic F127 as a cell encapsulation material: utilization of membrane-stabilizing agents. Tissue Eng. 2005;11(5–6):974–83.CrossRefPubMedGoogle Scholar
  25. 25.
    Chacon M, Molpeceres J, Berges L, Guzman M, Aberturas MR. Stability and freeze-drying of cyclosporine loaded poly(D,L lactide-glycolide) carriers. Eur J Pharm sci. 1999;8(2):99–107.CrossRefPubMedGoogle Scholar
  26. 26.
    Abdelwahed W, Degobert G, Stainmesse S, Fessi H. Freeze-drying of nanoparticles: formulation, process and storage considerations. Adv Drug Deliv Rev. 2006;58(15):1688–713.CrossRefGoogle Scholar
  27. 27.
    Fonte P, Reis S, Sarmento B. Facts and evidences on the lyophilization of polymeric nanoparticles for drug delivery. J Control Release. 2016;225:75–86.CrossRefPubMedGoogle Scholar
  28. 28.
    Conte C, Costabile G, d'Angelo I, Pannico M, Musto P, Grassia G, et al. Skin transport of PEGylated poly(epsilon-caprolactone) nanoparticles assisted by (2-hydroxypropyl)-beta-cyclodextrin. J Colloid Interface Sci. 2015;454:112–20.CrossRefPubMedGoogle Scholar
  29. 29.
    Costabile G, d'Angelo I, Rampioni G, Bondi R, Pompili B, Ascenzioni F, et al. Toward repositioning niclosamide for antivirulence therapy of Pseudomonas aeruginosa lung infections: development of inhalable formulations through nanosuspension technology. Mol Pharm. 2015;12(8):2604–17.CrossRefPubMedGoogle Scholar
  30. 30.
    d'Angelo I, Costabile G, Durantie E, Brocca P, Rondelli V, Russo A, et al. Hybrid lipid/polymer nanoparticles for pulmonary delivery of siRNA: development and fate upon in vitro deposition on the human epithelial airway barrier. J Aerosol Med Pulm Drug Deliv. 2018;31(3):170–81.CrossRefPubMedGoogle Scholar
  31. 31.
    Hoda M, Sufi SA, Cavuturu B, Rajagopalan R. Stabilizers influence drug-polymer interactions and physicochemical properties of disulfiram-loaded poly-lactide-co-glycolide nanoparticles. Future Science OA. 2018;4(2):Fso263.CrossRefPubMedGoogle Scholar
  32. 32.
    VAd M, Ricci-Júnior E. Encapsulation of naproxen in nanostructured system: structural characterization and in vitro release studies. Química Nova. 2011;34:933–9.CrossRefGoogle Scholar
  33. 33.
    Bian X, Liang S, John J, Hsiao CH, Wei X, Liang D, et al. Development of PLGA-based itraconazole injectable nanospheres for sustained release. Int J Nanomedicine. 2013;8:4521–31.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Sonam CH, Kumar V. Taguchi design for optimization and development of antibacterial drug-loaded PLGA nanoparticles. Int J Biol Macromol. 2014;64:99–105.CrossRefPubMedGoogle Scholar
  35. 35.
    Marslin G, Revina AM, Khandelwal VK, Balakumar K, Sheeba CJ, Franklin G. PEGylated ofloxacin nanoparticles render strong antibacterial activity against many clinically important human pathogens. Colloids Surf B: Biointerfaces. 2015;132:62–70.CrossRefPubMedGoogle Scholar
  36. 36.
    Huang X, Brazel CS. On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. J Control Release. 2001;73(2–3):121–36.CrossRefPubMedGoogle Scholar
  37. 37.
    Blanco-Prieto MJ, Besseghir K, Orsolini P, Heimgartner F, Deuschel C, Merkle HP, et al. Importance of the test medium for the release kinetics of a somatostatin analogue from poly(D,L-lactide-co-glycolide) microspheres. Int J Pharm. 1999;184(2):243–50.CrossRefPubMedGoogle Scholar
  38. 38.
    Zhang J, Tao W, Chen Y, Chang D, Wang T, Zhang X, et al. Doxorubicin-loaded star-shaped copolymer PLGA-vitamin E TPGS nanoparticles for lung cancer therapy. J Mater Sci Mater Med. 2015;26(4):165.CrossRefPubMedGoogle Scholar
  39. 39.
    Fredenberg S, Reslow M, Axelsson A. Effect of divalent cations on pore formation and degradation of poly(D,L-lactide-co-glycolide). Pharm Dev Technol. 2007;12(6):563–72.CrossRefPubMedGoogle Scholar
  40. 40.
    Fernandes P, Martens E. Antibiotics in late clinical development. Biochem Pharmacol. 2017;133:152–63.CrossRefPubMedGoogle Scholar
  41. 41.
    Singh SB, Young K, Silver LL. What is an “ideal” antibiotic? Discovery challenges and path forward. Biochem Pharmacol. 2017;133:63–73.CrossRefGoogle Scholar
  42. 42.
    Manca ML, Mourtas S, Dracopoulos V, Fadda AM, Antimisiaris SG. PLGA, chitosan or chitosan-coated PLGA microparticles for alveolar delivery? A comparative study of particle stability during nebulization. Colloids Surf B: Biointerfaces. 2008;62(2):220–31.CrossRefPubMedGoogle Scholar
  43. 43.
    Barichello JM, Morishita M, Takayama K, Nagai T. Encapsulation of hydrophilic and lipophilic drugs in PLGA nanoparticles by the nanoprecipitation method. Drug Dev Ind Pharm. 1999;25(4):471–6.CrossRefPubMedGoogle Scholar
  44. 44.
    Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Preat V. PLGA-based nanoparticles: an overview of biomedical applications. J Control Release 2012;161(2):505–522.CrossRefPubMedGoogle Scholar
  45. 45.
    Sah H, Thoma LA, Desu HR, Sah E, Wood GC. Concepts and practices used to develop functional PLGA-based nanoparticulate systems. Int J Nanomedicine. 2013;8:747–65.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Geller DE, Madge S. Technological and behavioral strategies to reduce treatment burden and improve adherence to inhaled antibiotics in cystic fibrosis. Respir Med. 2011;105(Suppl 2):S24–31.CrossRefPubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2018

Authors and Affiliations

  • Gabriella Costabile
    • 1
  • Kathrin I. Gasteyer
    • 2
  • Venkatereddy Nadithe
    • 2
  • Katherine Van Denburgh
    • 2
  • Qian Lin
    • 2
  • Shiv Sharma
    • 2
  • Joshua J. Reineke
    • 3
  • Steven M. Firestine
    • 2
  • Olivia M. Merkel
    • 1
    • 2
    Email author
  1. 1.Department of Pharmacy, Pharmaceutical Technology and BiopharmacyLudwig-Maximilians-UniversityMunichGermany
  2. 2.Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health SciencesWayne State UniversityDetroitUSA
  3. 3.Department of Pharmaceutical SciencesSouth Dakota State UniversityBrookingsUSA

Personalised recommendations