Advertisement

AAPS PharmSciTech

, Volume 19, Issue 8, pp 3670–3680 | Cite as

Nucleic Acid-Based Therapeutics for Pulmonary Diseases

  • Jing Chen
  • Yue Tang
  • Yun Liu
  • Yushun Dou
Review Article
  • 138 Downloads

Abstract

Nucleic acid-based therapeutics present huge potential in the treatment of pulmonary diseases ranging from lung cancer to asthma and chronic pulmonary diseases, which are often fatal and widely prevalent. The susceptibility of nucleic acids to degradation and the complex structure of lungs retard the effective pulmonary delivery of nucleic acid drug. To overcome these barriers, different strategies have been exploited to increase the delivery efficiency using chemically synthesized nucleic acids, vector encapsulation, proper formulation, and administration route. However, several limitations regarding off-target effects and immune stimulation of nucleic acid drugs hamper their translation into the clinical practice. Therefore, their successful clinical application will ultimately rely on well-developed carriers and methods to ensure safety and efficacy. In this review, we provide a comprehensive overview of the nucleic acid application for pulmonary diseases, covering action mechanism of the nucleic acid drugs, the novel delivery systems, and the current formulation for the administration to lungs. The latest advances of nucleic acid drugs under clinical evaluation to treat pulmonary disorders will also be detailed.

Key Words

nucleic acid antisense oligonucleotide (ASO) short interfering RNA (siRNA) microRNA (miRNA) pulmonary diseases 

References

  1. 1.
    World Health Organization. The top 10 causes of death [Internet]. Available from: http://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
  2. 2.
    Kolb M, Martin G, Medina M, Ask K, Gauldie J. Gene therapy for pulmonary diseases. Chest [internet]. 2006;130(3):879–84. http://sci-hub.tw/10.1378/chest.130.3.879 CrossRefGoogle Scholar
  3. 3.
    Xie Y, Kim NH, Nadithe V, Schalk D, Thakur A, Kilic A, et al. Targeted delivery of siRNA to activated T cells via transferrin-polyethylenimine (Tf-PEI) as a potential therapy of asthma. J Control Release. 2016;229:120–9.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Bennett CF, Baker BF, Pham N, Swayze E, Geary RS. Pharmacology of antisense drugs. Annu Rev Pharmacol Toxicol [internet]. 2017;57(1):81–105 http://sci-hub.tw/10.1146/annurev-pharmtox-010716-104846.CrossRefGoogle Scholar
  5. 5.
    Sasaki S, Guo S. Nucleic acid therapies for cystic fibrosis. Nucleic Acid Ther [internet]. 2018;28(1):1–9. http://sci-hub.tw/10.1089/nat.2017.0696.CrossRefGoogle Scholar
  6. 6.
    Kole R, Krainer AR, Altman S. RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nat Rev Drug Discov [internet]. 2012;11(2):125–40 Available from: http://www.nature.com/articles/nrd3625.CrossRefGoogle Scholar
  7. 7.
    Kaczmarek JC, Kowalski PS, Anderson DG. Advances in the delivery of RNA therapeutics: from concept to clinical reality. Genome Med. 2017;9(1):1–16.CrossRefGoogle Scholar
  8. 8.
    Stein CA, Castanotto D. FDA-approved oligonucleotide therapies in 2017. Mol Ther [internet]. 2017;25(5):1069–75. http://sci-hub.tw/10.1016/j.ymthe.2017.03.023.CrossRefGoogle Scholar
  9. 9.
    Senderowicz AM, Sausville EA. Preclinical and clinical development of siRNA-based therapeutics. Adv Drug Deliv Rev. 2015;87:108–19.CrossRefGoogle Scholar
  10. 10.
    Lam JKW, Chow MYT, Zhang Y, Leung SWS. siRNA versus miRNA as therapeutics for gene silencing. Mol Ther Nucleic Acids [internet]. 2015;4(9):e252 Available from: http://linkinghub.elsevier.com/retrieve/pii/S2162253116300373.CrossRefGoogle Scholar
  11. 11.
    Nguyen DD, Chang S. Development of novel therapeutic agents by inhibition of oncogenic microRNAs. Int J Mol Sci [internet]. 2017;19(1):65 Available from: http://www.mdpi.com/1422-0067/19/1/65.CrossRefGoogle Scholar
  12. 12.
    Hammond SM. An overview of microRNAs. Adv Drug Deliv Rev [internet]. 2015;87:3–14. http://sci-hub.tw/10.1016/j.addr.2015.05.001.CrossRefGoogle Scholar
  13. 13.
    Pereira DM, Rodrigues PM, Borralho PM, Rodrigues CMP. Delivering the promise of miRNA cancer therapeutics. Drug Discov Today. 2013;18(5–6):282–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Catela Ivkovic T, Voss G, Cornella H, Ceder Y. microRNAs as cancer therapeutics: a step closer to clinical application. Cancer Lett [internet]. 2017;407:113–22. http://sci-hub.tw/10.1016/j.canlet.2017.04.007.CrossRefGoogle Scholar
  15. 15.
    Sundaram P, Kurniawan H, Byrne ME, Wower J. Therapeutic RNA aptamers in clinical trials. Eur J Pharm Sci [internet]. 2013;48(1–2):259–71. http://sci-hub.tw/10.1016/j.ejps.2012.10.014.CrossRefGoogle Scholar
  16. 16.
    Radom F, Jurek PM, Mazurek MP, Otlewski J, Jeleń F. Aptamers: molecules of great potential. Biotechnol Adv. 2013;31(8):1260–74.CrossRefPubMedGoogle Scholar
  17. 17.
    Dassie JP, Giangrande PH. Current progress on aptamer-targeted oligonucleotide therapeutics. Ther Deliv. 2013;4(12):1527–46.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Zhou J, Rossi J. Aptamers as targeted therapeutics: current potential and challenges. Nat Rev Drug Discov. 2017;16(3):181–202.CrossRefPubMedGoogle Scholar
  19. 19.
    Product label approved by the US. Food and Drug Association on 10/12/2011 for MACUGEN®, NDA 021756. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2011/021756s018lbl.pdf
  20. 20.
    Catuogno S, Rienzo A, Di Vito A, Esposito CL, De Franciscis V. Selective delivery of therapeutic single strand antimiRs by aptamer-based conjugates. J Control Release [internet]. 2015;210:147–59. http://sci-hub.tw/10.1016/j.jconrel.2015.05.276.CrossRefGoogle Scholar
  21. 21.
    Esposito CL, Cerchia L, Catuogno S, De Vita G, Dassie JP, Santamaria G, et al. Multifunctional aptamer-miRNA conjugates for targeted cancer therapy. Mol Ther [internet]. 2014;22(6):1151–63. http://sci-hub.tw/10.1038/mt.2014.5.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Ruigrok MJR, Frijlink HW, Hinrichs WLJ. Pulmonary administration of small interfering RNA: the route to go? J Control Release [internet]. 2016;235:14–23. http://sci-hub.tw/10.1016/j.jconrel.2016.05.054.CrossRefPubMedGoogle Scholar
  23. 23.
    Koli U, Krishnan RA, Pofali P, Jain R, Dandekar P. SiRNA-based therapies for pulmonary diseases. J Biomed Nanotechnol. 2014;10(9):1953–97.CrossRefPubMedGoogle Scholar
  24. 24.
    de Souza Carvalho C, Daum N, Lehr CM. Carrier interactions with the biological barriers of the lung: advanced in vitro models and challenges for pulmonary drug delivery. Adv Drug Deliv Rev [internet]. 2014;75:129–40. http://sci-hub.tw/10.1016/j.addr.2014.05.014.
  25. 25.
    Lai SK, Wang YY, Hanes J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv Drug Deliv Rev [internet]. 2009;61(2):158–71. http://sci-hub.tw/10.1016/j.addr.2008.11.002.CrossRefPubMedGoogle Scholar
  26. 26.
    Dowdy SF. Overcoming cellular barriers for RNA therapeutics. Nat Biotechnol. 2017;35(3):222–9.CrossRefPubMedGoogle Scholar
  27. 27.
    Dominska M, Dykxhoorn DM. Breaking down the barriers: siRNA delivery and endosome escape. J Cell Sci [internet]. 2010;123(Pt 8):1183–9 http://www.ncbi.nlm.nih.gov/pubmed/20356929.CrossRefGoogle Scholar
  28. 28.
    Wang L, Ariyarathna Y, Ming X, Yang B, James LI, Kreda SM, et al. A novel family of small molecules that enhance the intracellular delivery and pharmacological effectiveness of antisense and splice switching oligonucleotides. ACS Chem Biol. 2017;12(8):1999–2007.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Yang B, Ming X, Cao C, Laing B, Yuan A, Porter MA, et al. High-throughput screening identifies small molecules that enhance the pharmacological effects of oligonucleotides. Nucleic Acids Res. 2015;43(4):1987–96.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Liao W, Dong J, Peh HY, Tan LH, Lim KS, Li L, et al. Oligonucleotide therapy for obstructive and restrictive respiratory diseases. Molecules. 2017;22(1):1–23.CrossRefGoogle Scholar
  31. 31.
    Opalinska JB, Gewirtz AM. Nucleic-acid therapeutics: basic principles and recent applications. Nat Rev Drug Discov [internet]. 2002;1(7):503–14. http://sci-hub.tw/10.1038/nrd837.CrossRefGoogle Scholar
  32. 32.
    Lee SH, Kang YY, Jang HE, Mok H, et al. Adv Drug Deliv Rev [internet]. 2016;104:78–92. http://sci-hub.tw/10.1016/j.addr.2015.10.009.
  33. 33.
    Lee SJ, Kim MJ, Kwon IC, Roberts TM. Delivery strategies and potential targets for siRNA in major cancer types. Adv Drug Deliv Rev [internet]. 2015;104:2–15. http://sci-hub.tw/10.1016/j.addr.2016.05.010.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Chernikov IV, Gladkikh DV, Meschaninova MI, Ven’yaminova AG, Zenkova MA, Vlassov VV, et al. Cholesterol-containing nuclease-resistant siRNA accumulates in tumors in a carrier-free mode and silences MDR1 gene. Mol Ther Nucleic Acids [internet]. 2017;6(March):209–20 Available from: http://linkinghub.elsevier.com/retrieve/pii/S2162253116303791.CrossRefGoogle Scholar
  35. 35.
    Alberti MO, Deshane JS, Chaplin DD, Pereboeva L, Curiel DT, Roth JC. A myeloid cell-binding adenovirus efficiently targets gene transfer to the lung and escapes liver tropism. Gene Ther [internet]. 2013;20(7):733–41 Available from: http://www.nature.com/articles/gt201291.CrossRefGoogle Scholar
  36. 36.
    Schuster BS, Kim AJ, Kays JC, Kanzawa MM, Guggino WB, Boyle MP, et al. Overcoming the cystic fibrosis sputum barrier to leading adeno-associated virus gene therapy vectors. Mol Ther. 2014;22(8):1484–93.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Liu D, Dong Y, Liu Z, Niu B, Wang Y, Gao X. Impact of TREM-2 gene silencing on inflammatory response of endotoxin-induced acute lung injury in mice. Mol Cell Biochem. 2014;394(1–2):155–61.CrossRefPubMedGoogle Scholar
  38. 38.
    McLendon JM, Joshi SR, Sparks J, Matar M, Fewell JG, Abe K, et al. Lipid nanoparticle delivery of a microRNA-145 inhibitor improves experimental pulmonary hypertension. J Control Release [internet]. 2015;210:67–75. http://sci-hub.tw/10.1016/j.jconrel.2015.05.261.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Fehring V, Schaeper U, Ahrens K, Santel A, Keil O, Eisermann M, et al. Delivery of therapeutic siRNA to the lung endothelium via novel lipoplex formulation DACC. Mol Ther. 2014;22(4):811–20.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Okuda T, Morishita M, Mizutani K, Shibayama A, Okazaki M, Okamoto H. Development of spray-freeze-dried siRNA/PEI powder for inhalation with high aerosol performance and strong pulmonary gene silencing activity. J Control Release [internet]. 2018;279(November):99–113. http://sci-hub.tw/10.1016/j.jconrel.2018.04.003.CrossRefPubMedGoogle Scholar
  41. 41.
    Bielski E, Zhong Q, Mirza H, Brown M, Molla A, Carvajal T, et al. TPP-dendrimer nanocarriers for siRNA delivery to the pulmonary epithelium and their dry powder and metered-dose inhaler formulations. Int J Pharm [internet]. 2017;527(1–2):171–83. http://sci-hub.tw/10.1016/j.ijpharm.2017.05.046.CrossRefPubMedGoogle Scholar
  42. 42.
    Bohr A, Tsapis N, Andreana I, Chamarat A, Foged C, Delomenie C, et al. Anti-inflammatory effect of anti-TNF-α SiRNA cationic phosphorus dendrimer nanocomplexes administered intranasally in a murine acute lung injury model. Biomacromolecules. 2017;18(8):2379–88.CrossRefPubMedGoogle Scholar
  43. 43.
    Khan OF, Zaia EW, Jhunjhunwala S, Xue W, Cai W, Yun DS, et al. Dendrimer-inspired nanomaterials for the in vivo delivery of siRNA to lung vasculature. Nano Lett. 2015;15(5):3008–16.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Luo Y, Zhai X, Ma C, Sun P, Fu Z, Liu W, et al. An inhalable β2-adrenoceptor ligand-directed guanidinylated chitosan carrier for targeted delivery of siRNA to lung. J Control Release [internet]. 2012;162(1):28–36. http://sci-hub.tw/10.1016/j.jconrel.2012.06.005.CrossRefPubMedGoogle Scholar
  45. 45.
    Islam N, Ferro V. Recent advances in chitosan-based nanoparticulate pulmonary drug delivery. Nanoscale [internet]. 2016;8(30):14341-58. http://sci-hub.tw/10.1039/c6nr03256g.CrossRefPubMedGoogle Scholar
  46. 46.
    d’Angelo I, Costabile G, Durantie E, Brocca P, Rondelli V, Russo A, et al. Hybrid lipid/polymer nanoparticles for pulmonary delivery of siRNA: development and fate upon in vitro deposition on the human epithelial airway barrier. J Aerosol Med Pulm Drug Deliv [internet]. 2017;30:1-12. http://sci-hub.tw/10.1089/jamp.2017.1364.
  47. 47.
    De Backer L, Naessens T, De Koker S, Zagato E, Demeester J, Grooten J, et al. Hybrid pulmonary surfactant-coated nanogels mediate efficient in vivo delivery of siRNA to murine alveolar macrophages. J Control Release [internet]. 2015;217:53–63. http://sci-hub.tw/10.1016/j.jconrel.2015.08.030.CrossRefGoogle Scholar
  48. 48.
    De Backer L, Braeckmans K, Stuart MCA, Demeester J, De Smedt SC, Raemdonck K. Bio-inspired pulmonary surfactant-modified nanogels: a promising siRNA delivery system. J Control Release [internet]. 2015;206:177–86. http://sci-hub.tw/10.1016/j.jconrel.2015.03.015.
  49. 49.
    Merckx P, De Backer L, Van Hoecke L, Guagliardo R, Echaide M, Baatsen P, et al. Surfactant protein B (SP-B) enhances the cellular siRNA delivery of proteolipid coated nanogels for inhalation therapy. Acta Biomater [internet]. 2018;78:236-246. http://sci-hub.tw/10.1016/j.actbio.2018.08.012.CrossRefPubMedGoogle Scholar
  50. 50.
    Pierrat P, Wang R, Kereselidze D, Lux M, Didier P, Kichler A, et al. Efficient in vitro and in vivo pulmonary delivery of nucleic acid by carbon dot-based nanocarriers. Biomaterials. 2015;51:290–302.CrossRefPubMedGoogle Scholar
  51. 51.
    Frede A, Neuhaus B, Knuschke T, Wadwa M, Kollenda S, Klopfleisch R, et al. Local delivery of siRNA-loaded calcium phosphate nanoparticles abates pulmonary inflammation. Nanomedicine [internet]. 2017;13(8):2395–403. http://sci-hub.tw/10.1016/j.nano.2017.08.001.CrossRefGoogle Scholar
  52. 52.
    Leite Nascimento T, Hillaireau H, Vergnaud J, Rivano M, Deloménie C, Courilleau D, et al. Hyaluronic acid-conjugated lipoplexes for targeted delivery of siRNA in a murine metastatic lung cancer model. Int J Pharm [internet]. 2016;514(1):103–11. http://sci-hub.tw/10.1016/j.ijpharm.2016.06.125.CrossRefGoogle Scholar
  53. 53.
    Vicentini FTMDC, Borgheti-Cardoso LN, Depieri LV, De MacEdo Mano D, Abelha TF, Petrilli R, et al. Delivery systems and local administration routes for therapeutic siRNA. Pharm Res. 2013;30(4):915–31.CrossRefPubMedGoogle Scholar
  54. 54.
    Lam JK-W, Liang W, Chan H-K. Pulmonary delivery of therapeutic siRNA. Adv Drug Deliv Rev [internet]. 2012;64(1):1–15. http://sci-hub.tw/10.1016/j.addr.2011.02.006.CrossRefPubMedGoogle Scholar
  55. 55.
    Yan Y, Zhou K, Xiong H, Miller JB, Motea EA, Boothman DA, et al. Aerosol delivery of stabilized polyester-siRNA nanoparticles to silence gene expression in orthotopic lung tumors. Biomaterials [internet]. 2016;118:84–93. http://sci-hub.tw/10.1016/j.biomaterials.2016.12.001.CrossRefPubMedGoogle Scholar
  56. 56.
    Gomes dos Reis L, Svolos M, Hartwig B, Windhab N, Young PM, Traini D. Inhaled gene delivery: a formulation and delivery approach. Expert Opin Drug Deliv. 2017;14(3):319–30.CrossRefPubMedGoogle Scholar
  57. 57.
    Ni S, Liu Y, Tang Y, Chen J, Li S, Pu J, et al. GABABreceptor ligand-directed trimethyl chitosan/tripolyphosphate nanoparticles and their pMDI formulation for survivin siRNA pulmonary delivery. Carbohydr Polym. 2018;179(June 2017):135–44.CrossRefPubMedGoogle Scholar
  58. 58.
    Chow MYT, Lam JKW. Dry powder formulation of plasmid DNA and siRNA for inhalation. Curr Pharm Des [internet]. 2015;21(27):3854–66 Available from: http://www.ncbi.nlm.nih.gov/pubmed/26290202.CrossRefGoogle Scholar
  59. 59.
    Chow MYT, Qiu Y, Lo FFK, Lin HHS, Chan HK, Kwok PCL, et al. Inhaled powder formulation of naked siRNA using spray drying technology with l-leucine as dispersion enhancer. Int J Pharm [internet]. 2017;530(1–2):40–52. http://sci-hub.tw/10.1016/j.ijpharm.2017.07.013.CrossRefGoogle Scholar
  60. 60.
    Gautam A, Waldrep CJ, Densmore CL. Delivery systems for pulmonary gene therapy. Am J Respir Med [internet]. 2002;1(1):35–46 Available from: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emed5&NEWS=N&AN=2003346437.CrossRefGoogle Scholar
  61. 61.
    Kusumoto K, Akita H, Ishitsuka T, Matsumoto Y, Nomoto T, Furukawa R, et al. Lipid envelope-type nanoparticle incorporating a multifunctional peptide for systemic siRNA delivery to the pulmonary endothelium. ACS Nano. 2013;7(9):7534–41.CrossRefPubMedGoogle Scholar
  62. 62.
    Qi J, Mu D. MicroRNAs and lung cancers: from pathogenesis to clinical implications. Front Med [internet]. 2012;6(2):134–55. http://sci-hub.tw/10.1007/s11684-012-0188-4.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Lee H-Y, Mohammed KA, Nasreen N. Nanoparticle-based targeted gene therapy for lung cancer. Am J Cancer Res [internet]. 2016;6(5):1118–34 Available from: www.ajcr.us.Google Scholar
  64. 64.
    Zielinski R, Chi KN. Custirsen (OGX-011): a second-generation antisense inhibitor of clusterin in development for the treatment of prostate cancer. Future Oncol [internet]. 2012;8(10):1239–51. http://sci-hub.tw/10.2217/fon.12.129.CrossRefPubMedGoogle Scholar
  65. 65.
    Laskin JJ, Nicholas G, Lee C, Gitlitz B, Vincent M, Cormier Y, et al. Phase I/II trial of custirsen (OGX-011), an inhibitor of clusterin, in combination with a gemcitabine and platinum regimen in patients with previously untreated advanced non-small cell lung cancer. J Thorac Oncol [internet]. 2012;7(3):579–86. http://sci-hub.tw/10.1097/JTO.0b013e31823f459c.CrossRefPubMedGoogle Scholar
  66. 66.
    Chiappori AA, Kolevska T, Spigel DR, Hager S, Rarick M, Gadgeel S, et al. A randomized phase II study of the telomerase inhibitor imetelstat as maintenance therapy for advanced non-small-cell lung cancer. Ann Oncol [internet]. 2015;26(2):354–62 Available from: http://academic.oup.com/annonc/article/26/2/354/2800615/A-randomized-phase-II-study-of-the-telomerase.CrossRefGoogle Scholar
  67. 67.
    DeVincenzo J, Lambkin-Williams R, Wilkinson T, Cehelsky J, Nochur S, Walsh E, et al. A randomized, double-blind, placebo-controlled study of an RNAi-based therapy directed against respiratory syncytial virus. Proc Natl Acad Sci U S A. 2010;107(19):8800–5.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Chakraborty C, Sharma AR, Sharma G, Doss CGP, Lee S-S. Therapeutic miRNA and siRNA: moving from bench to clinic as next generation medicine. Mol Ther Nucleic Acids [internet]. 2017;8(September):132–43. http://sci-hub.tw/10.1016/j.omtn.2017.06.005.CrossRefGoogle Scholar
  69. 69.
    Cortinovis D, Monica V, Pietrantonio F, Ceresoli GL, La Spina CM, Wannesson L. MicroRNAs in non-small cell lung cancer: current status and future therapeutic promises. Curr Pharm Des. 2014;20(24):3982–90.CrossRefPubMedGoogle Scholar
  70. 70.
    Beg MS, Brenner AJ, Sachdev J, Borad M, Kang YK, Stoudemire J, et al. Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors. Investig New Drugs. 2017;35(2):180–8.CrossRefGoogle Scholar
  71. 71.
    van Zandwijk N, Pavlakis N, Kao SC, Linton A, Boyer MJ, Clarke S, et al. Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: a first-in-man, phase 1, open-label, dose-escalation study. Lancet Oncol [internet]. 2017;18(10):1386–96. http://sci-hub.tw/10.1016/S1470-2045(17)30621-6.
  72. 72.
    MacDiarmid JA, Brahmbhatt H. Minicells: Versatile vectors for targeted drug or si/shRNA cancer therapy. Curr Opin Biotechnol. 2011;22(6):909–16.CrossRefPubMedGoogle Scholar
  73. 73.
    Loftus PA, Wise SK. Epidemiology and economic burden of asthma. Int Forum Allergy Rhinol. 2015;5(September):S7–10.CrossRefPubMedGoogle Scholar
  74. 74.
    Adcock IM, Caramori G, Chung KF. New targets for drug development in asthma. Lancet. 2008;372(9643):1073–87.CrossRefPubMedGoogle Scholar
  75. 75.
    Barnes PJ. New therapies for asthma: is there any progress? Trends Pharmacol Sci [internet]. 2010;31(7):335–43. http://sci-hub.tw/10.1016/j.tips.2010.04.009.CrossRefPubMedGoogle Scholar
  76. 76.
    Olin JT, Wechsler ME. Asthma: pathogenesis and novel drugs for treatment. BMJ. 2014;349:g5517. http://sci-hub.tw/10.1136/bmj.g5517 CrossRefPubMedGoogle Scholar
  77. 77.
    Choi M, Gu J, Lee M, Rhim T. A new combination therapy for asthma using dual-function dexamethasone-conjugated polyethylenimine and vitamin D binding protein siRNA. Gene Ther [internet]. 2017;24(11):727–34. http://sci-hub.tw/10.1038/gt.2017.83.CrossRefPubMedGoogle Scholar
  78. 78.
    Dong J, Liao W, Peh HY, Chan TK, Tan WSD, Li L, et al. Ribosomal protein S3 gene silencing protects against experimental allergic asthma. Br J Pharmacol. 2017;174(7):540–52.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Krug N, Hohlfeld JM, Kirsten A-M, Kornmann O, Beeh KM, Kappeler D, et al. Allergen-induced asthmatic responses modified by a GATA3-specific DNAzyme. N Engl J Med [internet]. 2015;372(21):1987–95. http://sci-hub.tw/10.1056/NEJMoa1411776.CrossRefPubMedGoogle Scholar
  80. 80.
    Gauvreau GM, Boulet LP, Cockcroft DW, Baatjes A, Cote J, Deschesnes F, et al. Antisense therapy against CCR3 and the common beta chain attenuates allergen-induced eosinophilic responses. Am J Respir Crit Care Med. 2008;177(9):952–8.CrossRefPubMedGoogle Scholar
  81. 81.
    Decramer M, Janssens W, Miravitlles M. Chronic obstructive pulmonary disease. Lancet [internet]. 2012;379(9823):1341–51. http://sci-hub.tw/10.1016/S0140-6736(11)60968-9.CrossRefGoogle Scholar
  82. 82.
    Matera MG, Calzetta L, Segreti A, Cazzola M. Emerging drugs for chronic obstructive pulmonary disease. Expert Opin Emerg Drugs [internet]. 2012;17(1):61–82. http://sci-hub.tw/10.1517/14728214.2012.660917 http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L364510964%5Cn.
  83. 83.
    Babu KS, Morjaria JB. Emerging therapeutic strategies in COPD. Drug Discov Today [internet]. 2015;20(3):371–9. http://sci-hub.tw/10.1016/j.drudis.2014.11.003.CrossRefPubMedGoogle Scholar
  84. 84.
    Seguin R, Ferrari N. A multi-targeted antisense oligonucleotide-based therapy directed at phosphodiesterases 4 and 7 for COPD. In: Ong KC, editor. Chronic Obstructive Pulmonary Disease - Current Concepts and Practice. InTech; 2012. p.435–454. Google Scholar
  85. 85.
    Wu L, Zhang J, Qu JM, Bai CX, Merrilees MJ. Deposition of insoluble elastin by pulmonary fibroblasts from patients with COPD is increased by treatment with versican siRNA. Int J COPD. 2017;12:267–73.CrossRefGoogle Scholar
  86. 86.
    Maltby S, Plank M, Tay HL, Collison A, Foster PS. Targeting microRNA function in respiratory diseases: mini-review. Front Physiol. 2016;7(FEB):1–10.Google Scholar
  87. 87.
    Barreiro E. The role of microRNAs in COPD muscle dysfunction and mass loss: implications on the clinic. Expert Rev Respir Med. 2016;10(9):1011–22.CrossRefPubMedGoogle Scholar
  88. 88.
    Connolly M, Paul R, Farre-Garros R, Natanek SA, Bloch S, Lee J, et al. miR-424-5p reduces ribosomal RNA and protein synthesis in muscle wasting. J Cachexia Sarcopenia Muscle [internet]. 2018;9(2):400–16. http://sci-hub.tw/10.1002/jcsm.12266.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Paul R, Lee J, Donaldson AV, Connolly M, Sharif M, Natanek SA, et al. miR-422a suppresses SMAD4 protein expression and promotes resistance to muscle loss. J Cachexia Sarcopenia Muscle [internet]. 2018;9(1):119–28. http://sci-hub.tw/10.1002/jcsm.12236.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Elborn JS. Cystic fibrosis. Lancet. 2016;388(10059):2519–31.CrossRefPubMedGoogle Scholar
  91. 91.
    Crosby JR, Zhao C, Jiang C, Bai D, Katz M, Greenlee S, et al. Inhaled ENaC antisense oligonucleotide ameliorates cystic fibrosis-like lung disease in mice. J Cyst Fibros [internet]. 2017;16(6):671–80. http://sci-hub.tw/10.1016/j.jcf.2017.05.003.CrossRefPubMedGoogle Scholar
  92. 92.
    Dhooghe B, Haaf JB, Noel S, Leal T. Strategies in early clinical development for the treatment of basic defects of cystic fibrosis. Expert Opin Investig Drugs [internet]. 2016;25(4):423–36. http://sci-hub.tw/10.1517/13543784.2016.1154041.CrossRefPubMedGoogle Scholar
  93. 93.
    Rowe S, Sermet-Gaudelus I, Clancy JP, Nichols D, Nick J, De Boeck K, et al. WS13.1 QR-010, an investigational RNA therapeutic, improves CFTR activity in cystic fibrosis subjects homozygous for the F508del mutation. J Cyst Fibros [internet]. 2017;16:S23 Available from: http://linkinghub.elsevier.com/retrieve/pii/S156919931730231X.CrossRefGoogle Scholar
  94. 94.
    Fanelli V, Ranieri VM. Mechanisms and clinical consequences of acute lung injury. Ann Am Thorac Soc. 2015;12:S3–8.CrossRefPubMedGoogle Scholar
  95. 95.
    Parekh D, Dancer RC, Thickett DR. Acute lung injury. Clin Med (Northfield Il) [internet]. 2011;11(6):615–8. http://sci-hub.tw/10.7861/clinmedicine.11-6-615.
  96. 96.
    Guo Z, Wen Z, Qin A, Zhou Y, Liao Z, Liu Z, et al. Antisense oligonucleotide treatment enhances the recovery of acute lung injury through IL-10-secreting M2-like macrophage-induced expansion of CD4+ regulatory T cells. J Immunol [internet]. 2013;190(8):4337–48 Available from: http://sci-hub.tw/10.4049/jimmunol.1203233.CrossRefPubMedGoogle Scholar
  97. 97.
    Li N, Song Y, Zhao W, Han T, Lin S, Ramirez O, et al. Small interfering RNA targeting NF-κB attenuates lipopolysaccharide-induced acute lung injury in rats. BMC Physiol [internet]. 2016;16(1):1–8. http://sci-hub.tw/10.1186/s12899-016-0027-y.
  98. 98.
    Oh B, Lee M. Combined delivery of HMGB-1 box A peptide and S1PLyase siRNA in animal models of acute lung injury. J Control Release [internet]. 2014;175(1):25–35. http://sci-hub.tw/10.1016/j.jconrel.2013.12.008.CrossRefPubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2018

Authors and Affiliations

  1. 1.Department of PharmacyChina Pharmaceutical UniversityNanjingPeople’s Republic of China

Personalised recommendations