Advertisement

AAPS PharmSciTech

, Volume 19, Issue 6, pp 2719–2739 | Cite as

Pluronic-Based Mixed Polymeric Micelles Enhance the Therapeutic Potential of Curcumin

  • Muhammad Usman Akbar
  • Khalid Mahmood Zia
  • Ahsan Nazir
  • Jamshed Iqbal
  • Syeda Abida Ejaz
  • Muhammad Sajid Hamid Akash
Research Article
  • 156 Downloads

Abstract

Curcumin is a naturally occurring constituent of turmeric that is a good substitute for synthetic medicines for the treatment of different diseases, due to its comparatively safer profile. However, there are certain shortcomings that limit its use as an ideal therapeutic agent. In order to overcome these drawbacks, we prepared novel curcumin-loaded mixed polymeric micelles using different biocompatible polymers by the thin-film hydration method. We investigated the critical micelle concentration and temperature, drug loading and encapsulation efficiency, and minimum inhibitory concentration by spectrophotometry. Surface morphology, stability, particle size, drug-polymer interaction, and physical state of the prepared formulations were investigated using scanning electron microscopy, zeta potential, particle size analyzer, Fourier-transform infrared spectroscopy, and X-ray diffraction, respectively. The drug loading and entrapment efficiency were significantly increased (P < 0.01) when curcumin was encapsulated with pluronic-based mixed polymeric micelles as compared to that of pluronic-based micelles alone. In vitro studies exhibited that pluronic-based mixed polymeric micelles significantly increased anticancer (P < 0.01), antimicrobial (P < 0.001), antioxidant (P < 0.001), and α-amylase inhibitory (P < 0.001) activities when compared to pure curcumin and/or pluronic-based micelles alone. These findings suggest that the formation of mixed polymeric micelles increases the stability and solubility of curcumin.

KEY WORDS

mixed polymeric micelles micelle characterization drug delivery system 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Akram M, Uddin S, Ahmed A, Usmanghani K, Hannan A, Mohiuddin E, et al. Curcuma longa and curcumin: a review article. Rom J Biol Plant Biol. 2010;55(2):65–70.Google Scholar
  2. 2.
    Oliveira AS, Sousa E, Helena Vasconcelos M, Pinto M. Curcumin: a natural lead for potential new drug candidates. Curr Med Chem. 2015;22(36):4196–232.PubMedGoogle Scholar
  3. 3.
    Chauhan M, Saha S, Roy A. Curcumin: a review. J Applied Pharm Res. 2014;2(1):18–28.Google Scholar
  4. 4.
    Hani U, Shivakumar H. Solubility enhancement and delivery systems of curcumin a herbal medicine: a review. Current Drug Delivery. 2014;11(6):792–804.PubMedGoogle Scholar
  5. 5.
    Akbar MU, Rehman K, Zia KM, Qadir MI, Akash MSH, Ibrahim M. Critical review on curcumin as a therapeutic agent: from traditional herbal medicine to an ideal therapeutic agent. Crit Rev Eukaryot Gene Expr. 2018;28(1):17–24.PubMedGoogle Scholar
  6. 6.
    Balasubramanian K. Molecular orbital basis for yellow curry spice curcumin’s prevention of Alzheimer’s disease. J Agric Food Chem. 2006;54(10):3512–20.PubMedGoogle Scholar
  7. 7.
    Lal J, Gupta SK, Thavaselvam D, Agarwal DD. Synthesis and pharmacological activity evaluation of curcumin derivatives. Chin Chem Lett. 2016;27(7):1067–72.Google Scholar
  8. 8.
    Bendary E, Francis R, Ali H, Sarwat M, El Hady S. Antioxidant and structure–activity relationships (SARs) of some phenolic and anilines compounds. Ann Agric Sci. 2013;58(2):173–81.Google Scholar
  9. 9.
    Namratha K, Shenai P, Chatra L, Rao PK, Veena KM, Prabhu RV. Antioxidant and anticancer effects of curcumin-a review. Çağdaş Tıp Dergisi. 2013;3(2):136–43.Google Scholar
  10. 10.
    Negi P, Jayaprakasha G, Jagan Mohan Rao L, Sakariah K. Antibacterial activity of turmeric oil: a byproduct from curcumin manufacture. J Agric Food Chem. 1999;47(10):4297–300.PubMedGoogle Scholar
  11. 11.
    Sharma R, Gescher A, Steward W. Curcumin: the story so far. Eur J Cancer. 2005;41(13):1955–68.PubMedGoogle Scholar
  12. 12.
    Bansal SS, Goel M, Aqil F, Vadhanam MV, Gupta RC. Advanced drug delivery systems of curcumin for cancer chemoprevention. Cancer Prev Res. 2011;4(8):1158–71.Google Scholar
  13. 13.
    Lao CD, Ruffin MT, Normolle D, Heath DD, Murray SI, Bailey JM, et al. Dose escalation of a curcuminoid formulation. BMC Complement Altern Med. 2006;6(1):10.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Cheng A-L, Hsu C-H, Lin J-K, Hsu M-M, Ho Y-F, Shen T-S, et al. Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res. 2001;21(4B):2895–900.PubMedGoogle Scholar
  15. 15.
    Shoba G, Joy D, Joseph T, Majeed M, Rajendran R, Srinivas P. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med. 1998;64(04):353–6.PubMedGoogle Scholar
  16. 16.
    Liu W, Zhai Y, Heng X, Che FY, Chen W, Sun D, et al. Oral bioavailability of curcumin: problems and advancements. J Drug Target. 2016;24(8):694–702.PubMedGoogle Scholar
  17. 17.
    Zhao L, Du J, Duan Y, Zhang H, Yang C, Cao F, et al. Curcumin loaded mixed micelles composed of pluronic P123 and F68: preparation, optimization and in vitro characterization. Colloids Surf B: Biointerfaces. 2012;97:101–8.PubMedGoogle Scholar
  18. 18.
    Yen F-L, Wu T-H, Tzeng C-W, Lin L-T, Lin C-C. Curcumin nanoparticles improve the physicochemical properties of curcumin and effectively enhance its antioxidant and antihepatoma activities. J Agric Food Chem. 2010;58(12):7376–82.PubMedGoogle Scholar
  19. 19.
    Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: problems and promises. Mol Pharm. 2007;4(6):807–18.PubMedGoogle Scholar
  20. 20.
    Tønnesen HH, Másson M, Loftsson T. Studies of curcumin and curcuminoids. XXVII. Cyclodextrin complexation: solubility, chemical and photochemical stability. Int J Pharm. 2002;244(1):127–35.PubMedGoogle Scholar
  21. 21.
    Kurien BT, Singh A, Matsumoto H, Scofield RH. Improving the solubility and pharmacological efficacy of curcumin by heat treatment. Assay and Drug Development Technologies. 2007;5(4):567–76.PubMedGoogle Scholar
  22. 22.
    Yang X, Chen J, Guo D. Study of biocompatibility of polybutylcyanoacrylate nanoparticles. Di Yi Jun Yi Da Xue Xue Bao. 2005;25(10):1261–3.PubMedGoogle Scholar
  23. 23.
    Wang J, Ma W, Tu P. The mechanism of self-assembled mixed micelles in improving curcumin oral absorption: in vitro and in vivo. Colloids Surf B: Biointerfaces. 2015;133:108–19.PubMedGoogle Scholar
  24. 24.
    Shelma R, Sharma CP. In vitro and in vivo evaluation of curcumin loaded lauroyl sulphated chitosan for enhancing oral bioavailability. Carbohydr Polym. 2013;95(1):441–8.PubMedGoogle Scholar
  25. 25.
    Anitha A, Maya S, Deepa N, Chennazhi K, Nair S, Tamura H, et al. Efficient water soluble O-carboxymethyl chitosan nanocarrier for the delivery of curcumin to cancer cells. Carbohydr Polym. 2011;83(2):452–61.Google Scholar
  26. 26.
    Ramalingam P, Yoo SW, Ko YT. Nanodelivery systems based on mucoadhesive polymer coated solid lipid nanoparticles to improve the oral intake of food curcumin. Food Res Int. 2016;84:113–9.Google Scholar
  27. 27.
    Sun M, Zhao L, Guo C, Cao F, Chen H, Zhao L, et al. Evaluation of an oral carrier system in rats: bioavailability and gastrointestinal absorption properties of curcumin encapsulated PBCA nanoparticles. J Nanopart Res. 2012;14(2):705.Google Scholar
  28. 28.
    Tung BT, Duyen DT, Thuy HT, Hang HT, Diéguez K, Santana MC, Garrigues T, Binh NT, Hai NT. Pharmacokinetics of different pharmaceutical nano curcumin products by oral administration. Int J Phar Sci Nanotech. 2017;(6):3915–19.Google Scholar
  29. 29.
    Tsai Y-M, Jan W-C, Chien C-F, Lee W-C, Lin L-C, Tsai T-H. Optimised nano-formulation on the bioavailability of hydrophobic polyphenol, curcumin, in freely-moving rats. Food Chem. 2011;127(3):918–25.PubMedGoogle Scholar
  30. 30.
    Tomren M, Masson M, Loftsson T, Tønnesen HH. Studies on curcumin and curcuminoids: XXXI. Symmetric and asymmetric curcuminoids: stability, activity and complexation with cyclodextrin. Int J Pharm. 2007;338(1–2):27–34.PubMedGoogle Scholar
  31. 31.
    Maiti K, Mukherjee K, Gantait A, Saha BP, Mukherjee PK. Curcumin–phospholipid complex: preparation, therapeutic evaluation and pharmacokinetic study in rats. Int J Pharm. 2007;330(1–2):155–63.PubMedGoogle Scholar
  32. 32.
    Onoue S, Takahashi H, Kawabata Y, Seto Y, Hatanaka J, Timmermann B, et al. Formulation design and photochemical studies on nanocrystal solid dispersion of curcumin with improved oral bioavailability. J Pharm Sci. 2010;99(4):1871–81.PubMedGoogle Scholar
  33. 33.
    Duan C, Gao J, Zhang D, Jia L, Liu Y, Zheng D, et al. Galactose-decorated pH-responsive nanogels for hepatoma-targeted delivery of oridonin. Biomacromolecules. 2011;12(12):4335–43.PubMedGoogle Scholar
  34. 34.
    Takahashi M, Uechi S, Takara K, Asikin Y, Wada K. Evaluation of an oral carrier system in rats: bioavailability and antioxidant properties of liposome-encapsulated curcumin. J Agric Food Chem. 2009;57(19):9141–6.PubMedGoogle Scholar
  35. 35.
    Bisht S, Mizuma M, Feldmann G, Ottenhof NA, Hong S-M, Pramanik D, et al. Systemic administration of polymeric nanoparticle-encapsulated curcumin (NanoCurc) blocks tumor growth and metastases in preclinical models of pancreatic cancer. Mol Cancer Ther. 2010;9(8):2255–64.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Chacko RT, Ventura J, Zhuang J, Thayumanavan S. Polymer nanogels: a versatile nanoscopic drug delivery platform. Adv Drug Deliv Rev. 2012;64(9):836–51.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Cui J, Yu B, Zhao Y, Zhu W, Li H, Lou H, et al. Enhancement of oral absorption of curcumin by self-microemulsifying drug delivery systems. Int J Pharm. 2009;371(1–2):148–55.PubMedGoogle Scholar
  38. 38.
    Ahmed K, Li Y, McClements DJ, Xiao H. Nanoemulsion- and emulsion-based delivery systems for curcumin: encapsulation and release properties. Food Chem. 2012;132(2):799–807.Google Scholar
  39. 39.
    Shaikh J, Ankola D, Beniwal V, Singh D, Kumar MR. Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer. Eur J Pharm Sci. 2009;37(3–4):223–30.PubMedGoogle Scholar
  40. 40.
    Rasheed A, Ashok Kumar CK, VVNSS S. Cyclodextrins as drug carrier molecule: a review. Sci Pharm. 2008;76(4):567–98.Google Scholar
  41. 41.
    Gilbert JC, Richardson JL, Davies MC, Palin KJ, Hadgraft J. The effect of solutes and polymers on the gelation properties of pluronic F-127 solutions for controlled drug delivery. J Control Release. 1987;5(2):113–8.Google Scholar
  42. 42.
    Lenaerts V, Triqueneaux C, Quartern M, Rieg-Falson F, Couvreur P. Temperature-dependent rheological behavior of pluronic F-127 aqueous solutions. Int J Pharm. 1987;39(1–2):121–7.Google Scholar
  43. 43.
    Edsman K, Carlfors J, Petersson R. Rheological evaluation of poloxamer as an in situ gel for ophthalmic use. Eur J Pharm Sci. 1998;6(2):105–12.PubMedGoogle Scholar
  44. 44.
    Miller SC, Donovan MD. Effect of poloxamer 407 gel on the miotic activity of pilocarpine nitrate in rabbits. Int J Pharm. 1982;12(2–3):147–52.Google Scholar
  45. 45.
    Desai SD, Blanchard J. In vitro evaluation of Pluronic F127-based controlled-release ocular delivery systems for pilocarpine. J Pharm Sci. 1998;87(2):226–30.PubMedGoogle Scholar
  46. 46.
    Akash MSH, Rehman K. Recent progress in biomedical applications of Pluronic (PF127): pharmaceutical perspectives. J Control Release. 2015;209:120–38.  https://doi.org/10.1016/j.jconrel.2015.04.032. PubMedGoogle Scholar
  47. 47.
    Jeong B, Kim SW, Bae YH. Thermosensitive sol–gel reversible hydrogels. Adv Drug Deliv Rev. 2012;64:154–62.Google Scholar
  48. 48.
    Tang Y-F, Du Y-M, Hu X-W, Shi X-W, Kennedy JF. Rheological characterisation of a novel thermosensitive chitosan/poly (vinyl alcohol) blend hydrogel. Carbohydr Polym. 2007;67(4):491–9.Google Scholar
  49. 49.
    Kumar S, Haglund BO, Himmelstein KJ. In situ-forming gels for ophthalmic drug delivery. J Ocul Pharmacol Ther. 1994;10(1):47–56.Google Scholar
  50. 50.
    Akash MSH, Rehman K, Chen S. Pluronic F127-based thermosensitive gels for delivery of therapeutic proteins and peptides. Polym Rev. 2014;54(4):573–97.Google Scholar
  51. 51.
    Akash MSH, Rehman K, Chen S. Natural and synthetic polymers as drug carriers for delivery of therapeutic proteins. Polym Rev. 2015;55(3):371–406.Google Scholar
  52. 52.
    Akash MSH, Rehman K, Chen S. Polymeric-based particulate systems for delivery of therapeutic proteins. Pharm Dev Technol. 2016;21(3):367–78.  https://doi.org/10.3109/10837450.2014.999785.PubMedGoogle Scholar
  53. 53.
    Akash MSH, Rehman K, Li N, Gao JQ, Sun H, Chen S. Sustained delivery of IL-1Ra from pluronic F127-based thermosensitive gel prolongs its therapeutic potentials. Pharm Res. 2012;29(12):3475–85.  https://doi.org/10.1007/s11095-012-0843-0.PubMedGoogle Scholar
  54. 54.
    Akash MSH, Rehman K, Chen S. Role of inflammatory mechanisms in pathogenesis of type 2 diabetes mellitus. J Cell Biochem. 2013;114(3):525–31.  https://doi.org/10.1002/jcb.24402.PubMedGoogle Scholar
  55. 55.
    Alexandridis P. Poly (ethylene oxide)/poly (propylene oxide) block copolymer surfactants. Curr Opin Colloid Interface Sci. 1997;2(5):478–89.Google Scholar
  56. 56.
    Kabanov AV, Batrakova EV, Alakhov VY. Pluronic® block copolymers as novel polymer therapeutics for drug and gene delivery. J Control Release. 2002;82(2):189–212.PubMedGoogle Scholar
  57. 57.
    Chowdhary RK, Chansarkar N, Sharif I, Hioka N, Dolphin D. Formulation of benzoporphyrin derivatives in pluronics. Photochem Photobiol. 2003;77(3):299–303.PubMedGoogle Scholar
  58. 58.
    Joshi A, Ding S, Himmelstein KJ. Reversible gelation compositions and methods of use. Google Patents; 1993.Google Scholar
  59. 59.
    Kulthe SS, Choudhari YM, Inamdar NN, Mourya V. Polymeric micelles: authoritative aspects for drug delivery. Designed Monomers and Polymers. 2012;15(5):465–521.Google Scholar
  60. 60.
    Jones M-C, Leroux J-C. Polymeric micelles—a new generation of colloidal drug carriers. Eur J Pharm Biopharm. 1999;48(2):101–11.PubMedGoogle Scholar
  61. 61.
    Kabanov AV, Alakhov VY. Pluronic® block copolymers in drug delivery: from micellar nanocontainers to biological response modifiers. Crit Rev Ther Drug Carrier Syst. 2002;19(1):1–72.PubMedGoogle Scholar
  62. 62.
    Kazunori K, Masayuki Y, Teruo O, Yasuhisa S. Block copolymer micelles as vehicles for drug delivery. J Control Release. 1993;24(1–3):119–32.Google Scholar
  63. 63.
    Sezgin Z, Yüksel N, Baykara T. Ilaç tasiyici sistemler olarak polimerik misellerin hazirlanmasi ve karakterizasyonu. Ankara Ecz Fak Derg. 2003;32:125–42.Google Scholar
  64. 64.
    Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev. 2001;47(1):113–31.PubMedGoogle Scholar
  65. 65.
    Torchilin VP. Structure and design of polymeric surfactant-based drug delivery systems. J Control Release. 2001;73(2):137–72.PubMedGoogle Scholar
  66. 66.
    Yokoyama M, Satoh A, Sakurai Y, Okano T, Matsumura Y, Kakizoe T, et al. Incorporation of water-insoluble anticancer drug into polymeric micelles and control of their particle size. J Control Release. 1998;55(2):219–29.PubMedGoogle Scholar
  67. 67.
    Yu B, Okano T, Kataoka K, Kwon G. Polymeric micelles for drug delivery: solubilization and haemolytic activity of amphotericin B. J Control Release. 1998;53(1):131–6.PubMedGoogle Scholar
  68. 68.
    Allen C, Maysinger D, Eisenberg A. Nano-engineering block copolymer aggregates for drug delivery. Colloids Surf B: Biointerfaces. 1999;16(1):3–27.Google Scholar
  69. 69.
    Klaikherd A, Nagamani C, Thayumanavan S. Multi-stimuli sensitive amphiphilic block copolymer assemblies. J Am Chem Soc. 2009;131(13):4830–8.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Bouchemal K, Agnely F, Koffi A, Ponchel G. A concise analysis of the effect of temperature and propanediol-1, 2 on Pluronic F127 micellization using isothermal titration microcalorimetry. J Colloid Interface Sci. 2009;338(1):169–76.PubMedGoogle Scholar
  71. 71.
    Torchilin V. Targeted polymeric micelles for delivery of poorly soluble drugs. Cell Mol Life Sci. 2004;61(19):2549–59.PubMedGoogle Scholar
  72. 72.
    Mourya V, Inamdar N, Nawale R, Kulthe S. Polymeric micelles: general considerations and their applications. Ind J Pharm Educ Res. 2011;45:128–38.Google Scholar
  73. 73.
    Akash MSH, Rehman K, Chen S. Spice plant Allium cepa: dietary supplement for treatment of type 2 diabetes mellitus. Nutrition. 2014;30(10):1128–37.  https://doi.org/10.1016/j.nut.2014.02.011.PubMedGoogle Scholar
  74. 74.
    Akash MSH, Rehman K, Tariq M, Chen S. Development of therapeutic proteins: advances and challenges. Turk J Biol. 2015;39(3):343–58.Google Scholar
  75. 75.
    Allen TM, Cullis PR. Drug delivery systems: entering the mainstream. Science. 2004;303(5665):1818–22.PubMedGoogle Scholar
  76. 76.
    Oerlemans C, Bult W, Bos M, Storm G, Nijsen JFW, Hennink WE. Polymeric micelles in anticancer therapy: targeting, imaging and triggered release. Pharm Res. 2010;27(12):2569–89.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Nishiyama N, Kataoka K. Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol Ther. 2006;112(3):630–48.PubMedGoogle Scholar
  78. 78.
    Xiong X-B, Mahmud A, Uludağ H, Lavasanifar A. Multifunctional polymeric micelles for enhanced intracellular delivery of doxorubicin to metastatic cancer cells. Pharm Res. 2008;25(11):2555–66.PubMedGoogle Scholar
  79. 79.
    Varshosaz J, Tabbakhian M, Salmani Z. Designing of a thermosensitive chitosan/poloxamer in situ gel for ocular delivery of ciprofloxacin. The Open Drug Delivery Journal. 2008;2(1):61–70.Google Scholar
  80. 80.
    Zhang X, Jackson JK, Burt HM. Development of amphiphilic diblock copolymers as micellar carriers of taxol. Int J Pharm. 1996;132(1–2):195–206.Google Scholar
  81. 81.
    Park EK, Lee SB, Lee YM. Preparation and characterization of methoxy poly (ethylene glycol)/poly (ε-caprolactone) amphiphilic block copolymeric nanospheres for tumor-specific folate-mediated targeting of anticancer drugs. Biomaterials. 2005;26(9):1053–61.PubMedGoogle Scholar
  82. 82.
    Dey S, Sreenivasan K. Conjugation of curcumin onto alginate enhances aqueous solubility and stability of curcumin. Carbohydr Polym. 2014;99:499–507.PubMedGoogle Scholar
  83. 83.
    Kim SC, Kim DW, Shim YH, Bang JS, Oh HS, Kim SW, et al. In vivo evaluation of polymeric micellar paclitaxel formulation: toxicity and efficacy. J Control Release. 2001;72(1):191–202.PubMedGoogle Scholar
  84. 84.
    Dabholkar RD, Sawant RM, Mongayt DA, Devarajan PV, Torchilin VP. Polyethylene glycol–phosphatidylethanolamine conjugate (PEG–PE)-based mixed micelles: some properties, loading with paclitaxel, and modulation of P-glycoprotein-mediated efflux. Int J Pharm. 2006;315(1):148–57.PubMedGoogle Scholar
  85. 85.
    Schmolka IR. Artificial skin I. Preparation and properties of pluronic F-127 gels for treatment of burns. J Biomed Mater Res A. 1972;6(6):571–82.Google Scholar
  86. 86.
    Schmolka IR. A review of block polymer surfactants. J Am Oil Chem Soc. 1977;54(3):110–6.Google Scholar
  87. 87.
    Wei Z, Hao J, Yuan S, Li Y, Juan W, Sha X, et al. Paclitaxel-loaded Pluronic P123/F127 mixed polymeric micelles: formulation, optimization and in vitro characterization. Int J Pharm. 2009;376(1–2):176–85.PubMedGoogle Scholar
  88. 88.
    Gaisford S, Beezer AE, Mitchell JC. Diode-array UV spectrometric evidence for cooperative interactions in binary mixtures of pluronics F77, F87, and F127. Langmuir. 1997;13(10):2606–7.Google Scholar
  89. 89.
    Saxena V, Hussain MD. Poloxamer 407/TPGS mixed micelles for delivery of gambogic acid to breast and multidrug-resistant cancer. Int J Nanomedicine. 2012;7:713.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Jones R. Susceptibility tests: microdilution and macrodilution broth procedures. Manual of Clin Microbiol. 1985:972–7.Google Scholar
  91. 91.
    Mukherjee P, Balasubramanian R, Saha K, Saha B, Pal M. Antibacterial efficiency of Nelumbo nucifera (Nymphaeaceae) rhizomes extract. Indian Drugs. 1995;32(6):274–6.Google Scholar
  92. 92.
    Kabak M, Elmali A, Elerman Y, Durlu T. Conformational study and structure of bis-N, N′-p-bromo-salicylideneamine-1, 2-diaminobenzene. J Mol Struct. 2000;553(1):187–92.Google Scholar
  93. 93.
    Bagchi A, Mukherjee P, Bhowmick S, Raha A. Synthesis, characterization and antibacterial activity of a novel curcumin metal complex. Int J Drug Dev Res. 2015;7(2):011–4.Google Scholar
  94. 94.
    Bozin B, Mimica-Dukic N, Simin N, Anackov G. Characterization of the volatile composition of essential oils of some Lamiaceae spices and the antimicrobial and antioxidant activities of the entire oils. J Agric Food Chem. 2006;54(5):1822–8.PubMedGoogle Scholar
  95. 95.
    Xiao Z, Storms R, Tsang A. A quantitative starch–iodine method for measuring alpha-amylase and glucoamylase activities. Anal Biochem. 2006;351(1):146–8.PubMedGoogle Scholar
  96. 96.
    Toton E, Ignatowicz E, Bernard M, Kujawski J, Rybczynska M. Evaluation of apoptotic activity of new condensed pyrazole derivatives. J Physiol Pharmacol. 2013;64:115–23.PubMedGoogle Scholar
  97. 97.
    Kabanov AV, Batrakova EV, Alakhov VY. An essential relationship between ATP depletion and chemosensitizing activity of Pluronic® block copolymers. J Control Release. 2003;91(1):75–83.PubMedPubMedCentralGoogle Scholar
  98. 98.
    Kabanov AV, Batrakova EV, Miller DW. Pluronic® block copolymers as modulators of drug efflux transporter activity in the blood–brain barrier. Adv Drug Deliv Rev. 2003;55(1):151–64.PubMedGoogle Scholar
  99. 99.
    Sahoo SK, Panyam J, Prabha S, Labhasetwar V. Residual polyvinyl alcohol associated with poly (D, L-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake. J Control Release. 2002;82(1):105–14.PubMedGoogle Scholar
  100. 100.
    Misra R, Acharya S, Dilnawaz F, Sahoo SK. Sustained antibacterial activity of doxycycline-loaded poly (D, L-lactide-co-glycolide) and poly (ε-caprolactone) nanoparticles. Nanomedicine. 2009;4(5):519–30.PubMedGoogle Scholar
  101. 101.
    Mahajan HS, Mahajan PR. Development of grafted xyloglucan micelles for pulmonary delivery of curcumin: in vitro and in vivo studies. Int J Biol Macromol. 2016;82:621–7.PubMedGoogle Scholar
  102. 102.
    Yadav A, Lomash V, Samim M, Flora SJ. Curcumin encapsulated in chitosan nanoparticles: a novel strategy for the treatment of arsenic toxicity. Chem Biol Interact. 2012;199(1):49–61.PubMedGoogle Scholar
  103. 103.
    Popat A, Karmakar S, Jambhrunkar S, Xu C, Yu C. Curcumin-cyclodextrin encapsulated chitosan nanoconjugates with enhanced solubility and cell cytotoxicity. Colloids Surf B: Biointerfaces. 2014;117:520–7.PubMedGoogle Scholar
  104. 104.
    Wang Y, Lu Z, Wu H, Lv F. Study on the antibiotic activity of microcapsule curcumin against foodborne pathogens. Int J Food Microbiol. 2009;136(1):71–4.PubMedGoogle Scholar
  105. 105.
    Mun S-H, Joung D-K, Kim Y-S, Kang O-H, Kim S-B, Seo Y-S, et al. Synergistic antibacterial effect of curcumin against methicillin-resistant Staphylococcus aureus. Phytomedicine. 2013;20(8–9):714–8.PubMedGoogle Scholar
  106. 106.
    Basniwal RK, Buttar HS, Jain V, Jain N. Curcumin nanoparticles: preparation, characterization, and antimicrobial study. J Agric Food Chem. 2011;59(5):2056–61.PubMedGoogle Scholar
  107. 107.
    Yadav VR, Suresh S, Devi K, Yadav S. Effect of cyclodextrin complexation of curcumin on its solubility and antiangiogenic and anti-inflammatory activity in rat colitis model. AAPS PharmSciTech. 2009;10(3):752–62.PubMedPubMedCentralGoogle Scholar
  108. 108.
    Chaibundit C, Ricardo NM, Costa FM, Yeates SG, Booth C. Micellization and gelation of mixed copolymers P123 and F127 in aqueous solution. Langmuir. 2007;23(18):9229–36.PubMedGoogle Scholar
  109. 109.
    Gaucher G, Satturwar P, Jones M-C, Furtos A, Leroux J-C. Polymeric micelles for oral drug delivery. Eur J Pharm Biopharm. 2010;76(2):147–58.PubMedGoogle Scholar
  110. 110.
    Akhtar F, Rizvi MMA, Kar SK. Oral delivery of curcumin bound to chitosan nanoparticles cured Plasmodium yoelii infected mice. Biotechnol Adv. 2012;30(1):310–20.PubMedGoogle Scholar
  111. 111.
    Panyam J, Zhou W-Z, Prabha S, Sahoo SK, Labhasetwar V. Rapid endo-lysosomal escape of poly (DL-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery. FASEB J. 2002;16(10):1217–26.PubMedGoogle Scholar
  112. 112.
    Anitha A, Deepagan V, Rani VD, Menon D, Nair S, Jayakumar R. Preparation, characterization, in vitro drug release and biological studies of curcumin loaded dextran sulphate–chitosan nanoparticles. Carbohydr Polym. 2011;84(3):1158–64.Google Scholar
  113. 113.
    Pandey S, Sah SP, Sah ML, Mishra D. An antioxidant potential of hydromethanolic extract of urtica parviflora roxb. J Basic Clin Pharm. 2010;1(3):191–5.PubMedPubMedCentralGoogle Scholar
  114. 114.
    Rehman K, Akash MS. Mechanisms of inflammatory responses and development of insulin resistance: how are they interlinked? J Biomed Sci. 2016;23(1):87.PubMedPubMedCentralGoogle Scholar
  115. 115.
    Rehman K, Akash MSH. Mechanism of generation of oxidative stress and pathophysiology of type 2 diabetes mellitus: how are they interlinked? J Biomed Sci. 2017;118(11):3577–85.  https://doi.org/10.1002/jcb.26097.Google Scholar
  116. 116.
    Parveen A, Akash MSH, Rehman K, Kyunn WW. Dual role of p21 in the progression of cancer and its treatment. Crit Rev Eukaryot Gene Expr. 2016;26(1):49–62.  https://doi.org/10.1615/CritRevEukaryotGeneExpr.v26.i1.60.PubMedGoogle Scholar
  117. 117.
    Parveen A, Akash MSH, Rehman K, Kyunn WW. Recent investigations for discovery of natural antioxidants: a comprehensive review. Crit Rev Eukaryot Gene Expr. 2016;26(2):143–60.  https://doi.org/10.1615/CritRevEukaryotGeneExpr.2016015974.PubMedGoogle Scholar
  118. 118.
    ToDA S, Miyase T, Arichi H, Tanizawa H, Takino Y. Natural antioxidants. III. Antioxidative components isolated from rhizome of Curcuma longa L. Chem Pharm Bull. 1985;33(4):1725–8.PubMedGoogle Scholar
  119. 119.
    Tan C, Xie J, Zhang X, Cai J, Xia S. Polysaccharide-based nanoparticles by chitosan and gum arabic polyelectrolyte complexation as carriers for curcumin. Food Hydrocoll. 2016;57:236–45.Google Scholar
  120. 120.
    Akash MSH, Rehman K, Sun H, Chen S. Interleukin-1 receptor antagonist improves normoglycemia and insulin sensitivity in diabetic Goto-Kakizaki-rats. Eur J Pharmacol. 2013;701(1–3):87–95.  https://doi.org/10.1016/j.ejphar.2013.01.008.PubMedGoogle Scholar
  121. 121.
    Akash MSH, Shen Q, Rehman K, Chen S. Interleukin-1 receptor antagonist: a new therapy for type 2 diabetes mellitus. J Pharm Sci. 2012;101(5):1647–58.  https://doi.org/10.1002/jps.23057.PubMedGoogle Scholar
  122. 122.
    Rehman K, Tariq M, Akash MSH, Gillani Z, Qazi MH. Effect of HA14-1 on apoptosis-regulating proteins in HeLa cells. Chem Biol Drug Des. 2014;83(3):317–23.  https://doi.org/10.1111/cbdd.12245.PubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2018

Authors and Affiliations

  1. 1.Department of Applied ChemistryGovernment College UniversityFaisalabadPakistan
  2. 2.Department of Pharmaceutical ChemistryGovernment College UniversityFaisalabadPakistan
  3. 3.Department of Textile ChemistryNational Textile UniversityFaisalabadPakistan
  4. 4.Center for Advanced Drug Research, Department of PharmacyCOMSATS Institute of Information TechnologyAbbottabadPakistan

Personalised recommendations