Advertisement

AAPS PharmSciTech

, Volume 19, Issue 5, pp 2276–2287 | Cite as

Transdermal Delivery of Ondansetron Hydrochloride via Bilosomal Systems: In Vitro, Ex Vivo, and In Vivo Characterization Studies

  • Hussein O. Ammar
  • Magdy Ibrahim Mohamed
  • Mina Ibrahim Tadros
  • Aya Adel Fouly
Research Article
  • 104 Downloads

Abstract

Ondansetron hydrochloride (OND) is commonly used for management of postoperative and chemotherapeutic-induced nausea and vomiting. It suffers from low bioavailability (60%) and rapid elimination (t1/2; 3–4 h). The current work aimed to develop OND-loaded bilosomes as a promising transdermal delivery system capable of surmount drug limitations. The variables influencing the development of OND-loaded bilosomes and niosomes (18 systems) via the thin film hydration technique were investigated, including surfactant type (Span®60 or Span®80), surfactant/cholesterol molar ratio (7:0, 7:1, or 7:3), and sodium deoxycholate (SDC) concentration (0, 2.5, or 5%, w/v). The systems were characterized for particle size, polydispersity index, zeta potential, drug entrapment efficiency (EE%), and in vitro permeation. Based on factorial analysis (32·21) and calculations of desirability values, six systems were further subjected to ex vivo permeation through excised rat skin, differential scanning calorimetry (DSC), powder x-ray diffraction (PXRD), and transmission electron microscopy. Histopathological and in vivo permeation studies in rats were conducted on the best achieved system (B6) in comparison to drug solution. Higher desirability values were achieved with Span® 60-based bilosomes, surfactant/cholesterol molar ratio of 7:1, and SDC concentration of 2.5% w/v with respect to small vesicle size, polydispersity index and high zeta potential, EE%, and cumulative drug permeation. OND was dispersed in amorphous state as revealed from DSC and PXRD studies. No marked effect was observed in rat skin following application of B6 system while higher ex vivo and in vivo cumulative permeation profiles were revealed. Bilosomal systems were considered as safe and efficient carriers for the transdermal delivery for OND.

KEY WORDS

ondansetron bilosomes transdermal sodium deoxycholate permeation 

Notes

Compliance with Ethical Standards

The design of the studies was approved by the ethical committee of Future University in Egypt (reference number: REC-FPSPI-2/15) and followed the guidelines of Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC).

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Salihah N, Mazlan N, Lua PL. Chemotherapy-induced nausea and vomiting: exploring patients’ subjective experience. J Multidiscip Healthc. 2016;9:145–51.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Navari RM, Aapro M, Longo DL, Navari RM, Aapro M. Antiemetic prophylaxis for chemotherapy-induced nausea and vomiting. N Engl J Med. 2016;374(14):1356–67.CrossRefPubMedGoogle Scholar
  3. 3.
    Al Abood RM, Talegaonkar S, Tariq M, Ahmad FJ. Microemulsion as a tool for the transdermal delivery of ondansetron for the treatment of chemotherapy induced nausea and vomiting. Colloids Surf B Biointerfaces. 2013;101:143–51.CrossRefPubMedGoogle Scholar
  4. 4.
    Christofaki M, Papaioannou A. Ondansetron: a review of pharmacokinetics and clinical experience in postoperative nausea and vomiting. Expert Opin Drug Metab Toxicol. 2014 Mar 28;10(3):437–44.CrossRefPubMedGoogle Scholar
  5. 5.
    Silva SMC, Hu L, Sousa JJS, Pais AACC, Michniak-Kohn BB. A combination of nonionic surfactants and iontophoresis to enhance the transdermal drug delivery of ondansetron HCl and diltiazem HCl. Eur J Pharm Biopharm. 2012;80(3):663–73.CrossRefPubMedGoogle Scholar
  6. 6.
    Sakdiset P, Kitao Y, Todo H, Sugibayashi K. High-throughput screening of potential skin penetration-enhancers using stratum Corneum lipid liposomes: preliminary evaluation for different concentrations of ethanol. J Pharm. 2017;2017:1–10.Google Scholar
  7. 7.
    Conacher M, Alexander J, Brewer JM. Oral immunisation with peptide and protein antigens by formulation in lipid vesicles incorporating bile salts (bilosomes). Vaccine. 2001;19(20–22):2965–74.CrossRefPubMedGoogle Scholar
  8. 8.
    Al-Mahallawi AM, Abdelbary AA, Aburahma MH. Investigating the potential of employing bilosomes as a novel vesicular carrier for transdermal delivery of tenoxicam. Int J Pharm. 2015;485(1–2):329–40.CrossRefPubMedGoogle Scholar
  9. 9.
    Dai Y, Zhou R, Liu L, Lu Y, Qi J, et al. Liposomes containing bile salts as novel ocular delivery systems for tacrolimus (FK506): in vitro characterization and improved corneal permeation. Int J Nanomedicine. 2013;8:1921–33.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Benson HAE. Transdermal drug delivery: penetration enhancement techniques. Curr Drug Deliv. 2005 Jan;2(1):23–33.CrossRefPubMedGoogle Scholar
  11. 11.
    Tscharnuter W. Photon correlation spectroscopy in particle sizing. In: Tscharnuter W, editor. Encyclopedia of Analytical Chemistry 2000. p. 5469–5485.Google Scholar
  12. 12.
    Singh S, Trivedi S, Jain S. Design and Development of proniosome based transdermal delivery of ondansetron hydrochloride. Int J Pharm Biol Res. 2012;3(5):191–201.Google Scholar
  13. 13.
    Shamma RN, Aburahma MH. Follicular delivery of spironolactone via nanostructured lipid carriers for management of alopecia. Int J Nanomedicine. 2014;9:5449–60.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Malakar J, Nayak AK, Basu A. Ondansetron HCl microemulsions for transdermal delivery: formulation and In Vitro skin permeation. ISRN Pharm. 2012;2012:1–6.Google Scholar
  15. 15.
    Myers RH, Montgomery DC, Anderson-Cook CM. Response surface methodology : process and product optimization using designed experiments. Wiley; 2009. 680 p.Google Scholar
  16. 16.
    Manikkath J, Hegde AR, Kalthur G, Parekh HS, Mutalik S. Influence of peptide dendrimers and sonophoresis on the transdermal delivery of ketoprofen. Int J Pharm. 2017;521(1–2):110–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Yuan Y, Li S, Mo F, Zhong D. Investigation of microemulsion system for transdermal delivery of meloxicam. Int J Pharm. 2006 Sep 14;321(1–2):117–23.CrossRefPubMedGoogle Scholar
  18. 18.
    Indian Pharmacological Society. Indian journal of pharmacology. Vol. 39, Indian Journal of Pharmacology Medknow Publications on behalf of Indian Pharmacological Society; 2007. 216 p.Google Scholar
  19. 19.
    Bancroft JD, Gamble M. Theory and practice of histological techniques. Churchill Livingstone: Elsevier; 2008. 725 p Google Scholar
  20. 20.
    Tadros MI, Al-mahallawi AM. Long-circulating lipoprotein-mimic nanoparticles for smart intravenous delivery of a practically-insoluble antineoplastic drug: development, preliminary safety evaluations and preclinical pharmacokinetic studies. Int J Pharm. 2015;493(1–2):439–50.CrossRefPubMedGoogle Scholar
  21. 21.
    Moreira RF, Salvadori MC, Azevedo CP, Oliveira-Silva D, Borges DC, Moreno RA, et al. Development and validation of a rapid and sensitive LC-ESI-MS/MS method for ondansetron quantification in human plasma and its application in comparative bioavailability study. Biomed Chromatogr. 2010;24(11):1220–7.CrossRefPubMedGoogle Scholar
  22. 22.
    Tayel SA, El-Nabarawi MA, Tadros MI, Abd-Elsalam WH. Duodenum-triggered delivery of pravastatin sodium: II. Design, appraisal and pharmacokinetic assessments of enteric surface-decorated nanocubosomal dispersions. Drug Deliv. 2016;23(9):3266–78.CrossRefPubMedGoogle Scholar
  23. 23.
    Abd-Elbary A, Tadros MI, Alaa-Eldin AA. Development and in vitro/in vivo evaluation of etodolac controlled porosity osmotic pump tablets. AAPS PharmSciTech. 2011;12(2):485–95.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Taymouri S, Varshosaz J. Effect of different types of surfactants on the physical properties and stability of carvedilol nano-niosomes. Adv Biomed Res. 2016;5(1):48.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Badran M. Formulation and in vitro evaluation of flufenamic acid loaded deformable liposomes for improved skin delivery. Dig J Nanomater Biostructures. 9(1):83–91.Google Scholar
  26. 26.
    Khan MI, Madni A, Ahmad S, Mahmood MA, Rehman M, Ashfaq M, et al. Formulation design and characterization of a non-ionic surfactant based vesicular system for the sustained delivery of a new chondroprotective agent. Brazilian J Pharm Sci. 2015;51(3):607–15.CrossRefGoogle Scholar
  27. 27.
    Mokhtar M, Sammour OA, Hammad MA, Megrab NA. Effect of some formulation parameters on flurbiprofen encapsulation and release rates of niosomes prepared from proniosomes. Int J Pharm. 2008;361(1–2):104–11.CrossRefPubMedGoogle Scholar
  28. 28.
    Jadon PS, Gajbhiye V, Jadon RS, Gajbhiye KR, Ganesh N. Enhanced oral bioavailability of Griseofulvin via Niosomes. AAPS PharmSciTech. 2009;10(4):1186–92.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Deniz A, Sade A, Severcan F, Keskin D, Tezcaner A, Banerjee S. Celecoxib-loaded liposomes: effect of cholesterol on encapsulation and in vitro release characteristics. Biosci Rep. 2010;30(5):365–73.CrossRefPubMedGoogle Scholar
  30. 30.
    Sun J, Deng Y, Wang S, Cao J, Gao X, Dong X. Liposomes incorporating sodium deoxycholate for hexamethylmelamine (HMM) oral delivery: development, characterization, and in vivo evaluation. Drug Deliv. 2010;17(3):164–70.CrossRefPubMedGoogle Scholar
  31. 31.
    Chen Y, Lu Y, Chen J, Lai J, Sun J, Hu F, et al. Enhanced bioavailability of the poorly water-soluble drug fenofibrate by using liposomes containing a bile salt. Int J Pharm. 2009;376(1–2):153–60.CrossRefPubMedGoogle Scholar
  32. 32.
    Niu M, Tan Y, Guan P, Hovgaard L, Lu Y, Qi J, et al. Enhanced oral absorption of insulin-loaded liposomes containing bile salts: a mechanistic study. Int J Pharm. 2014;460(1–2):119–30.CrossRefPubMedGoogle Scholar
  33. 33.
    Pattnaik S, Swain K, Mallick S, Lin Z. Effect of casting solvent on crystallinity of ondansetron in transdermal films. Int J Pharm. 2011;406(1–2):106–10.CrossRefPubMedGoogle Scholar
  34. 34.
    Elshafeey A, Elsayed I, Abdelbary A. Nanosizing of a poorly soluble drug: technique optimization, factorial analysis, and pharmacokinetic study in healthy human volunteers. Int J Nanomedicine. 2014;9(1):2943.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Dragicevic-Curic N, Friedrich M, Petersen S, Scheglmann D, Douroumis D, Plass W, et al. Assessment of fluidity of different invasomes by electron spin resonance and differential scanning calorimetry. Int J Pharm. 2011;412(1–2):85–94.CrossRefPubMedGoogle Scholar
  36. 36.
    Vivek K, Reddy H, Murthy RSR. Investigations of the effect of the lipid matrix on drug entrapment, in vitro release, and physical stability of olanzapine-loaded solid lipid nanoparticles. AAPS PharmSciTech. 2007;8(4):16–24.CrossRefPubMedCentralGoogle Scholar
  37. 37.
    Abd-Elal RMA, Shamma RN, Rashed HM, Bendas ER. Trans-nasal zolmitriptan novasomes: in-vitro preparation, optimization and in-vivo evaluation of brain targeting efficiency. Drug Deliv. 2016;23(9):3374–86.CrossRefPubMedGoogle Scholar
  38. 38.
    Matloub AA, Salama AH, Aglan HA, AbouSamra MM, ElSouda SSM, Ahmed HH. Exploiting bilosomes for delivering bioactive polysaccharide isolated from Enteromorpha intestinalis for hacking hepatocellular carcinoma. Drug Dev Ind Pharm. 2017:1–12.Google Scholar
  39. 39.
    Abdelbary A, Al-mahallawi A, Abdelrahim M, Preparation AA. Optimization, and in vitro simulated inhalation delivery of carvedilol nanoparticles loaded on a coarse carrier intended for pulmonary administration. Int J Nanomedicine. 2015;10:6339.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Chella N, Narra N, Rama RT. Preparation and characterization of liquisolid compacts for improved dissolution of telmisartan. J Drug Deliv. 2014;2014:692793.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Li Z, Zhang M, Liu C, Zhou S, Zhang W, Wang T, et al. Development of liposome containing sodium deoxycholate to enhance oral bioavailability of itraconazole. Asian J Pharm Sci. 2017;12(2):157–64.CrossRefGoogle Scholar
  42. 42.
    Dhiman MK, Dhiman A, Sawant KK. Transbuccal delivery of 5-fluorouracil: permeation enhancement and pharmacokinetic study. AAPS PharmSciTech. 2009;10(1):258–65.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Shatalebi MA, Mostafavi SA, Moghaddas A. Niosome as a drug carrier for topical delivery of N-acetyl glucosamine. Res Pharm Sci. 2010;5(2):107–17.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Kravchenko I, Boyko Y, Novikova N, Egorova А, Andronati S. Influence of cholesterol and its esters on skin penetration in vivo and in vitro in rats and mice.Google Scholar
  45. 45.
    Marro D, Kalia YN, Delgado-Charro MB, Guy RH. Contributions of electromigration and electroosmosis to iontophoretic drug delivery. Pharm Res. 2001;18(12):1701–8.CrossRefPubMedGoogle Scholar
  46. 46.
    Moghimipour E, Ameri A, Handali S. Absorption-enhancing effects of bile salts. Molecules. 2015;20(8):14451–73.CrossRefPubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2018

Authors and Affiliations

  • Hussein O. Ammar
    • 1
  • Magdy Ibrahim Mohamed
    • 2
  • Mina Ibrahim Tadros
    • 2
  • Aya Adel Fouly
    • 1
  1. 1.Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Pharmaceutical IndustriesFuture University in EgyptCairoEgypt
  2. 2.Department of Pharmaceutics and Industrial Pharmacy, Faculty of PharmacyCairo UniversityCairoEgypt

Personalised recommendations