Advertisement

AAPS PharmSciTech

, Volume 19, Issue 5, pp 2041–2047 | Cite as

MPEG-PCL Copolymeric Micelles for Encapsulation of Azithromycin

  • Wenxiu Wei
  • Shida Li
  • Hongmei Xu
  • Feilong Zhou
  • Yi Wen
  • Zhimei Song
  • Sijia Feng
  • Runliang Feng
Research Article
  • 74 Downloads

Abstract

Macrolide antibiotics are lipophilic drugs with some limitations including low solubility, limited cellular permeation, patients discomfort, etc. With amphiphilic methoxy poly(ethylene glycol)-b-poly(ε-caprolactone) (MPEG-PCL) copolymer and azithromycin (AZT) as drug carrier and model drug, AZT-loaded micelles were prepared via thin-membrane hydration method in order to overcome these limitations. Encapsulation efficiency of AZT-loaded micelles was 94.40% with good storage stability for 28 days, and AZT’s water solubility was enhanced to 944 μg/mL. Fourier transform infrared spectrum and x-ray diffraction analysis indicated that AZT was enveloped into the micelles in amorphous form due to its interaction with the copolymer. AZT’s in vitro release from the AZT-loaded micelles demonstrated a slow and continuous behavior when compared with raw AZT. The release dynamics was accorded with Weibull equation, meaning that release amount of AZT lowered with time and was proportional to remaining amount of drug in the AZT-loaded micelles. Korsmeyer-Peppas fitting result suggested that drug release process was a classical Fickian diffusion-controlled manner. With Staphylococcus aureus as bacterial strain, antibacterial activity of the AZT-loaded micelles displayed was comparable with raw AZT. In conclusion, MPEG-PCL should be a promising carrier for macrolide antibiotic delivery in treatment of bacterial infections.

KEY WORDS

methoxy poly(ethylene glycol) poly(ε-caprolactone) micelles azithromycin macrolide antibiotics 

Notes

Funding information

This work is supported by the Natural Science Foundation of Shandong Province under grant number ZR2016BL15, and Science and Technology Project of University of Jinan under grant number XKY1732.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Bradbury F. Comparison of azithromycin versus clarithromycin in the treatment of patients with lower respiratory tract infection. J Antimicrob Chemother. 1993;31(suppl_E):153–62.CrossRefPubMedGoogle Scholar
  2. 2.
    Fernandez-Obregon AC. Azithromycin for the treatment of acne. Int J Dermatol. 2000;39(1):45–50.CrossRefPubMedGoogle Scholar
  3. 3.
    Kalhapure RS, Suleman N, Mocktar C, Seedat N, Govender T. Nanoengineered drug delivery systems for enhancing antibiotic therapy. J Pharm Sci. 2015;104(3):872–905.CrossRefPubMedGoogle Scholar
  4. 4.
    Azhdarzadeh M, Lotfipour F, Zakeri-Milani P, Mohammadi G, Valizadeh H. Anti-bacterial performance of azithromycin nanoparticles as colloidal drug delivery system against different gram-negative and gram-positive bacteria. Adv Pharm Bull. 2012;2(1):17–24.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Mohammadi G, Valizadeh H, Barzegar-Jalali M, Lotfipour F, Adibkia K, Milani M, et al. Development of azithromycin-PLGA nanoparticles: physicochemical characterization and antibacterial effect against Salmonella typhi. Colloids Surf B Biointerfaces. 2010;80(1):34–9.CrossRefPubMedGoogle Scholar
  6. 6.
    Toti US, Guru BR, Hali M, McPharlin CM, Wykes SM, Panyam J, et al. Targeted delivery of antibiotics to intracellular chlamydial infections using PLGA nanoparticles. Biomaterials. 2011;32(27):6606–13.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kwon GS, Kataoka K. Block copolymer micelles as long-circulating drug vehicles. Adv Drug Del Rev. 2012;64(2–3):237–45.CrossRefGoogle Scholar
  8. 8.
    Liu L, Venkatraman SS, Yang YY, Guo K, Lu J, He B, et al. Polymeric micelles anchored with TAT for delivery of antibiotics across the blood-brain barrier. Biopolymers. 2010;90(5):617–23.CrossRefGoogle Scholar
  9. 9.
    Sinha VR, Bansal K, Kaushik R, Kumria R, Trehan A. Poly-epsilon-caprolactone microspheres and nanospheres: an overview. Int J Pharm. 2004;278(1):1–23.CrossRefPubMedGoogle Scholar
  10. 10.
    Song ZM, Zhu WX, Liu N, Yang FY, Feng RL. Linolenic acid-modified PEG-PCL micelles for curcumin delivery. Int J Pharm. 2014;471(1–2):312–21.CrossRefPubMedGoogle Scholar
  11. 11.
    Gou M, Men K, Shi H, Xiang M, Zhang J, Song J, et al. Curcumin-loaded biodegradable polymeric micelles for colon cancer therapy in vitro and in vivo. Nano. 2011;3(4):1558–67.Google Scholar
  12. 12.
    Gong C, Deng S, Wu Q, Xiang M, Wei X, Li L, et al. Improving antiangiogenesis and anti-tumor activity of curcumin by biodegradable polymeric micelles. Biomaterials. 2013;34(4):1413–32.CrossRefPubMedGoogle Scholar
  13. 13.
    Wang BL, Shen YM, Zhang QW, Li YL, Luo M, Liu Z, et al. Codelivery of curcumin and doxorubicin by MPEG-PCL results in improved efficacy of systemically administered chemotherapy in mice with lung cancer. Int J Nanomedicine. 2013;8:3521–31.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Kheiri Manjili H, Ghasemi P, Malvandi H, Mousavi MS, Attari E, Danafar H. Pharmacokinetics and in vivo delivery of curcumin by copolymeric mPEG-PCL micelles. Eur J Pharm Biopharm. 2017;116:17–30.CrossRefPubMedGoogle Scholar
  15. 15.
    Sun CT, Zhou L, Gou ML, Shi S, Li T, Lang JY. Improved antitumor activity and reduced myocardial toxicity of doxorubicin encapsulated in MPEG-PCL nanoparticles. Oncol Rep. 2016;35(6):3600–6.CrossRefPubMedGoogle Scholar
  16. 16.
    Soliman GM, Attia MA, Mohamed RA. Poly(ethylene glycol)-block-poly(epsilon-caprolactone) nanomicelles for the solubilization and enhancement of antifungal activity of sertaconazole. Curr Drug Del. 2014;11(6):753–62.CrossRefGoogle Scholar
  17. 17.
    Song Z, Zhu W, Song J, Wei P, Yang F, Liu N, et al. Linear-dendrimer type methoxy-poly (ethylene glycol)-b-poly (epsilon-caprolactone) copolymer micelles for the delivery of curcumin. Drug Deliv. 2015;22(1):58–68.CrossRefPubMedGoogle Scholar
  18. 18.
    Lee H, Zeng F, Dunne M, Allen C. Methoxy poly(ethylene glycol)-block-poly(δ-valerolactone) copolymer micelles for formulation of hydrophobic drugs. Biomacromolecules. 2005;6(6):3119–28.CrossRefPubMedGoogle Scholar
  19. 19.
    Gong C, Xie Y, Wu Q, Wang Y, Deng S, Xiong D, et al. Improving anti-tumor activity with polymeric micelles entrapping paclitaxel in pulmonary carcinoma. Nano. 2012;4(19):6004–17.Google Scholar
  20. 20.
    Aucamp M, Odendaal R, Liebenberg W, Hamman J. Amorphous azithromycin with improved aqueous solubility and intestinal membrane permeability. Drug Dev Ind Pharm. 2015;41(7):1100–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Yadav AK, Mishra P, Jain S, Mishra P, Mishra AK, Agrawal GP. Preparation and characterization of HA–PEG–PCL intelligent core–corona nanoparticles for delivery of doxorubicin. J Drug Target. 2008;16(6):464–78.CrossRefPubMedGoogle Scholar
  22. 22.
    Zuo J, Gao Y, Bouchacra N, Löbenberg R. Evaluation of the DDSolver Software Applications. Biomed Res Int. 2014;2014(4):204925.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Zhang Y, Huo M, Zhou J, Zou A, Li W, Yao C, et al. DDSolver: an add-in program for modeling and comparison of drug dissolution profiles. AAPS J. 2010;12(3):263–71.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Sharma R, Walker RB, Pathak K. Evaluation of the kinetics and mechanism of drug release from econazole nitrate nanosponge loaded carbapol hydrogel. Indian J Pharm Edu Res. 2011;45(1):25–31.Google Scholar
  25. 25.
    Gandhi A, Jana S, Sen KK. In-vitro release of acyclovir loaded Eudragit RLPO® nanoparticles for sustained drug delivery. Int J Biol Macromol. 2014;67(Supplement C):478–82.CrossRefPubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2018

Authors and Affiliations

  • Wenxiu Wei
    • 1
  • Shida Li
    • 1
  • Hongmei Xu
    • 1
  • Feilong Zhou
    • 1
  • Yi Wen
    • 1
  • Zhimei Song
    • 1
  • Sijia Feng
    • 2
  • Runliang Feng
    • 1
  1. 1.School of Biological Science and TechnologyUniversity of JinanJinanPeople’s Republic of China
  2. 2.School of Basic Medical SciencesDali UniversityDaliPeople’s Republic of China

Personalised recommendations