Advertisement

AAPS PharmSciTech

, Volume 19, Issue 5, pp 1933–1956 | Cite as

Expanding the Application and Formulation Space of Amorphous Solid Dispersions with KinetiSol®: a Review

  • Daniel J. Ellenberger
  • Dave A. Miller
  • Robert O. WilliamsIII
Review Article Theme: Applications of KinetiSol Dispersing for Advanced Amorphous Solid Dispersions
Part of the following topical collections:
  1. Theme: Applications of KinetiSol Dispersing for Advanced Amorphous Solid Dispersions

Abstract

Due to the high number of poorly soluble drugs in the development pipeline, novel processes for delivery of these challenging molecules are increasingly in demand. One such emerging method is KinetiSol, which utilizes high shear to produce amorphous solid dispersions. The process has been shown to be amenable to difficult to process active pharmaceutical ingredients with high melting points, poor organic solubility, or sensitivity to heat degradation. Additionally, the process enables classes of polymers not conventionally processable due to their high molecular weight and/or poor organic solubility. Beyond these advantages, the KinetiSol process shows promise with other applications, such as the production of amorphous mucoadhesive dispersions for delivery of compounds that would also benefit from permeability enhancement.

KEY WORDS

KinetiSol amorphous solid dispersion (ASD) hot melt extrusion (HME) spray drying bioavailability 

References

  1. 1.
    Ku MS, Dulin W. A biopharmaceutical classification-based right-first-time formulation approach to reduce human pharmacokinetic variability and project cycle time from first-in-human to clinical proof-of-concept. Pharm Dev Technol. 2012;17(3):285–302.Google Scholar
  2. 2.
    Loftsson T, Brewster ME. Pharmaceutical applications of cyclodextrins: basic science and product development. J Pharm Pharmacol. 2010;62(11):1607–21.Google Scholar
  3. 3.
    Williams HD, Trevaskis NL, Charman SA, Shanker RM, Charman WN, Pouton CW, et al. Strategies to address low drug solubility in discovery and development. Pharmacol Rev. 2013;65(1):315–499.Google Scholar
  4. 4.
    Amidon GL, Lennernäs H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12(3):413–20.Google Scholar
  5. 5.
    Lipinski CA. Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods. 2000;44(1):235–49.Google Scholar
  6. 6.
    Bergström CA, Charman WN, Porter CJ. Computational prediction of formulation strategies for beyond-rule-of-5 compounds. Adv Drug Deliv Rev. 2016;101:6–21.Google Scholar
  7. 7.
    Leeson PD. Molecular inflation, attrition and the rule of five. Adv Drug Deliv Rev. 2016;101:22–33.Google Scholar
  8. 8.
    Jain N, Yalkowsky SH. Estimation of the aqueous solubility I: application to organic nonelectrolytes. J Pharm Sci. 2001;90(2):234–52.Google Scholar
  9. 9.
    Di L, Fish PV, Mano T. Bridging solubility between drug discovery and development. Drug Discov Today. 2012;17(9):486–95.Google Scholar
  10. 10.
    He Y, Ho C. Amorphous solid dispersions: utilization and challenges in drug discovery and development. J Pharm Sci. 2015;104(10):3237–58.Google Scholar
  11. 11.
    Guzmán HR, Tawa M, Zhang Z, Ratanabanangkoon P, Shaw P, Gardner CR, et al. Combined use of crystalline salt forms and precipitation inhibitors to improve oral absorption of celecoxib from solid oral formulations. J Pharm Sci. 2007;96(10):2686–702.Google Scholar
  12. 12.
    Bevernage J, Brouwers J, Brewster ME, Augustijns P. Evaluation of gastrointestinal drug supersaturation and precipitation: strategies and issues. Int J Pharm. 2013;453(1):25–35.Google Scholar
  13. 13.
    Jinno J-i, Kamada N, Miyake M, Yamada K, Mukai T, Odomi M, et al. Effect of particle size reduction on dissolution and oral absorption of a poorly water-soluble drug, cilostazol, in beagle dogs. J Control Release. 2006;111(1):56–64.Google Scholar
  14. 14.
    Brough C, Williams RO 3rd. Amorphous solid dispersions and nano-crystal technologies for poorly water-soluble drug delivery. Int J Pharm. 2013;453(1):157–66.Google Scholar
  15. 15.
    Banik M, Gopi SP, Ganguly S, Desiraju GR. Cocrystal and salt forms of furosemide: solubility and diffusion variations. Cryst Growth Des. 2016;16(9):5418–28.Google Scholar
  16. 16.
    Kuminek G, Cao F, da Rocha ABO, Cardoso SG, Rodríguez-Hornedo N. Cocrystals to facilitate delivery of poorly soluble compounds beyond-rule-of-5. Adv Drug Deliv Rev. 2016;101:143–66.PubMedCentralGoogle Scholar
  17. 17.
    Savla R, Browne J, Plassat V, Wasan KM, Wasan EK. Review and analysis of FDA approved drugs using lipid-based formulations. Drug Dev Ind Pharm. 2017:1–16.Google Scholar
  18. 18.
    Singh B, Bandopadhyay S, Kapil R, Singh R. Self-emulsifying drug delivery systems (SEDDS): formulation development, characterization, and applications. Crit Rev Ther Drug Carrier Syst. 2009;26(5)Google Scholar
  19. 19.
    Shi Y, Porter W, Merdan T, Li LC. Recent advances in intravenous delivery of poorly water-soluble compounds. Expert Opin Drug Deliv. 2009;6(12):1261–82.Google Scholar
  20. 20.
    Ilevbare GA, Xu W, John CT, D Ormes J, Kuiper JL, Templeton AC, et al. Solubility and dissolution considerations for amorphous solid dispersions. Pharmaceutical Sciences Encyclopedia. 2015.Google Scholar
  21. 21.
    Ueda K, Higashi K, Yamamoto K, Moribe K. Inhibitory effect of hydroxypropyl methylcellulose acetate succinate on drug recrystallization from a supersaturated solution assessed using nuclear magnetic resonance measurements. Mol Pharm. 2013;10(10):3801–11.Google Scholar
  22. 22.
    Miller JM, Beig A, Carr RA, Spence JK, Dahan A. A win–win solution in oral delivery of lipophilic drugs: supersaturation via amorphous solid dispersions increases apparent solubility without sacrifice of intestinal membrane permeability. Mol Pharm. 2012;9(7):2009–16.Google Scholar
  23. 23.
    Friesen DT, Shanker R, Crew M, Smithey DT, Curatolo W, Nightingale J. Hydroxypropyl methylcellulose acetate succinate-based spray-dried dispersions: an overview. Mol Pharm. 2008;5(6):1003–19.Google Scholar
  24. 24.
    Moser J, Broyles J, Liu L, Miller E, Wang M. Enhancing bioavailability of poorly soluble drugs using spray dried solid dispersions part I. AM Pharm Rev. 2008;11:70–1.Google Scholar
  25. 25.
    Paudel A, Worku ZA, Meeus J, Guns S, Van den Mooter G. Manufacturing of solid dispersions of poorly water soluble drugs by spray drying: formulation and process considerations. Int J Pharm. 2013;453(1):253–84.Google Scholar
  26. 26.
    Crowley MM, Zhang F, Repka MA, Thumma S, Upadhye SB, Kumar Battu S, et al. Pharmaceutical applications of hot-melt extrusion: part I. Drug Dev Ind Pharm. 2007;33(9):909–26.Google Scholar
  27. 27.
    Repka MA, Battu SK, Upadhye SB, Thumma S, Crowley MM, Zhang F, et al. Pharmaceutical applications of hot-melt extrusion: part II. Drug Dev Ind Pharm. 2007;33(10):1043–57.Google Scholar
  28. 28.
    Miller DA, Ellenberger D, Gil M. Spray-drying technology. Formulating Poorly Water Soluble Drugs: Springer; 2016. p. 437–525.Google Scholar
  29. 29.
    Broadhead J, Edmond Rouan S, Rhodes C. The spray drying of pharmaceuticals. Drug Dev Ind Pharm. 1992;18(11–12):1169–206.Google Scholar
  30. 30.
    Leuner C, Dressman J. Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm. 2000;50(1):47–60.Google Scholar
  31. 31.
    LaFountaine JS, McGinity JW, Williams RO 3rd. Challenges and strategies in thermal processing of amorphous solid dispersions: a review. AAPS PharmSciTech. 2016;17(1):43–55.Google Scholar
  32. 32.
    Miller DA, DiNunzio JC, Hughey JR, Williams RO 3rd, McGinity JW. KinetiSol: a new processing paradigm for amorphous solid dispersion systems. Drug Dev Deliv. 2012;11(2011):22–31.Google Scholar
  33. 33.
    Miller DA. Improved oral absorption of poorly water-soluble drugs by advanced solid dispersion systems: University of Texas 2007.Google Scholar
  34. 34.
    Rahman M. In: Leistritz, editor. The Use of Hot Melt Extrusion and Comparative Technologies in Preparing Solid Amorphous Dispersions and Controlled Release Dosage Forms. Ashland: Pharmaceutical Extrusion Seminar; 2012.Google Scholar
  35. 35.
    Sacchetti M. Thermodynamic analysis of DSC data for acetaminophen polymorphs. J Therm Anal Calorim. 2000;63(2):345–50.Google Scholar
  36. 36.
    Bennett RC, Brough C, Miller DA, O’Donnell KP, Keen JM, Hughey JR, et al. Preparation of amorphous solid dispersions by rotary evaporation and KinetiSol dispersing: approaches to enhance solubility of a poorly water-soluble gum extract. Drug Dev Ind Pharm. 2015;41(3):382–97.Google Scholar
  37. 37.
    Rustichelli C, Gamberini G, Ferioli V, Gamberini M, Ficarra R, Tommasini S. Solid-state study of polymorphic drugs: carbamazepine. J Pharm Biomed Anal. 2000;23(1):41–54.Google Scholar
  38. 38.
    Du Q, Xiong X, Suo Z, Tang P, He J, Zeng X, et al. Investigation of the solid forms of deferasirox: solvate, co-crystal, and amorphous form. RSC Adv. 2017;7(68):43151–60.Google Scholar
  39. 39.
    Zhou D, Zhang GG, Law D, Grant DJ, Schmitt EA. Thermodynamics, molecular mobility and crystallization kinetics of amorphous griseofulvin. Mol Pharm. 2008;5(6):927–36.Google Scholar
  40. 40.
    Cavalli R, Peira E, Caputo O, Gasco MR. Solid lipid nanoparticles as carriers of hydrocortisone and progesterone complexes with ß-cyclodextrins. Int J Pharm. 1999;182(1):59–69.Google Scholar
  41. 41.
    Basavoju S, Boström D, Velaga SP. Indomethacin–saccharin cocrystal: design, synthesis and preliminary pharmaceutical characterization. Pharm Res. 2008;25(3):530–41.Google Scholar
  42. 42.
    DiNunzio JC, Hughey JR, Brough C, Miller DA, Williams RO 3rd, McGinity JW. Production of advanced solid dispersions for enhanced bioavailability of itraconazole using KinetiSol® dispersing. Drug Dev Ind Pharm. 2010;36(9):1064–78.Google Scholar
  43. 43.
    Souto E, Müller R. SLN and NLC for topical delivery of ketoconazole. J Microencapsul. 2005;22(5):501–10.Google Scholar
  44. 44.
    Hughey JR, Keen JM, Brough C, Saeger S, McGinity JW. Thermal processing of a poorly water-soluble drug substance exhibiting a high melting point: the utility of KinetiSol® dispersing. Int J Pharm. 2011;419(1):222–30.Google Scholar
  45. 45.
    Hughey JR, Keen JM, Bennett RC, Obara S, McGinity JW. The incorporation of low-substituted hydroxypropyl cellulose into solid dispersion systems. Drug Dev Ind Pharm. 2015;41(8):1294–301.Google Scholar
  46. 46.
    LaFountaine JS, Jermain SV, Prasad LK, Brough C, Miller DA, Lubda D, et al. Enabling thermal processing of ritonavir–polyvinyl alcohol amorphous solid dispersions by KinetiSol® dispersing. Eur J Pharm Biopharm. 2016;101:72–81.Google Scholar
  47. 47.
    Hughey JR, DiNunzio JC, Bennett RC, Brough C, Miller DA, Ma H, et al. Dissolution enhancement of a drug exhibiting thermal and acidic decomposition characteristics by fusion processing: a comparative study of hot melt extrusion and KinetiSol® dispersing. AAPS PharmSciTech. 2010;11(2):760–74.PubMedCentralGoogle Scholar
  48. 48.
    Schopf C, inventor; E Merck, assignee Preparation of Quinolizine Derivatives United States patent 3132147. 1964.Google Scholar
  49. 49.
    Shah N, Iyer RM, Mair HJ, Choi DS, Tian H, Diodone R, et al. Improved human bioavailability of vemurafenib, a practically insoluble drug, using an amorphous polymer-stabilized solid dispersion prepared by a solvent-controlled coprecipitation process. J Pharm Sci. 2013;102(3):967–81.Google Scholar
  50. 50.
    Miller DA, Keen JM, Brough C, Ellenberger DJ, Cisneros M, Williams RO, et al. Bioavailability enhancement of a BCS IV compound via an amorphous combination product containing ritonavir. J Pharm Pharmacol. 2015;Google Scholar
  51. 51.
    Keen JM, Hughey JR, Bennett RC, Jannin V, Rosiaux Y, Marchaud D, et al. Effect of tablet structure on controlled release from supersaturating solid dispersions containing glyceryl behenate. Mol Pharm. 2014;12(1):120–6.Google Scholar
  52. 52.
    Hughey JR, Keen JM, Miller DA, Kolter K, Langley N, McGinity JW. The use of inorganic salts to improve the dissolution characteristics of tablets containing Soluplus®-based solid dispersions. Eur J Pharm Sci. 2013;48(4):758–66.Google Scholar
  53. 53.
    Miller DA, Keen JM, Kucera SU, Inventors; DisperSol technologies, LLC, assignee. Formulations of deferasirox and methods of making the same. United States patent application 15/185,888. 2016 Jun 17.Google Scholar
  54. 54.
    Brough C, McGinity JW, Miller DA, DiNunzio JC, Williams RO, Inventors; DisperSol technologies, LLC, assignee. Thermo-kinetic mixing for pharmaceutical applications. United States patent 8486423 B2. 2013 Jul?16.Google Scholar
  55. 55.
    LaFountaine JS, Prasad LK, Brough C, Miller DA, McGinity JW, Williams RO 3rd. Thermal processing of PVP-and HPMC-based amorphous solid dispersions. AAPS PharmSciTech. 2016;17(1):120–32.Google Scholar
  56. 56.
    DiNunzio JC, Brough C, Hughey JR, Miller DA, Williams RO, McGinity JW. Fusion production of solid dispersions containing a heat-sensitive active ingredient by hot melt extrusion and Kinetisol® dispersing. Eur J Pharm Biopharm. 2010;74(2):340–51.Google Scholar
  57. 57.
    Hughey JR, Keen JM, Miller DA, Brough C, McGinity JW. Preparation and characterization of fusion processed solid dispersions containing a viscous thermally labile polymeric carrier. Int J Pharm. 2012;438(1):11–9.Google Scholar
  58. 58.
    DiNunzio JC, Brough C, Miller DA, Williams RO, McGinity JW. Applications of KinetiSol® dispersing for the production of plasticizer free amorphous solid dispersions. Eur J Pharm Sci. 2010;40(3):179–87.Google Scholar
  59. 59.
    Keen JM. Development of itraconazole tablets containing viscous KinetiSol® solid dispersions: in vitro and in vivo analysis in dogs. AAPS PharmSciTech. 2017.Google Scholar
  60. 60.
    Brough C, Miller DA, Keen JM, Kucera SA, Lubda D, Williams RO 3rd. Use of polyvinyl alcohol as a solubility-enhancing polymer for poorly water soluble drug delivery (part 1). AAPS PharmSciTech. 2016;17(1):167–79.Google Scholar
  61. 61.
    Brough C, Miller DA, Ellenberger D, Lubda D, Williams RO 3rd. Use of polyvinyl alcohol as a solubility enhancing polymer for poorly water-soluble drug delivery (part 2). AAPS PharmSciTech. 2016;17(1):180–90.PubMedCentralGoogle Scholar
  62. 62.
    Miller DA, Keen, Justin M, Brough, Chris. Inventor tetrabenazine modified release formulation. 2015.Google Scholar
  63. 63.
    Miller DA, Keen, Justin M, Brough, Chris, Kucera, Sandra U, and Ellenberger, Daniel J, inventor. Improved Formulations of Vemurafenib and Methods of Making the Same. 2016.Google Scholar
  64. 64.
    Rowe RC, Sheskey PJ, Weller PJ. Handbook of Pharmaceutical Excipients. 6th ed. 2009.Google Scholar
  65. 65.
    Coppens K, Hall M, Larsen P, Mitchell S, Nguyen P, Read M, et al., editors. Thermal and rheological evaluation of pharmaceutical excipients for hot melt extrusion. AAPS Annual Meeting and Exposition, Baltimore, MD; 2004.Google Scholar
  66. 66.
    Yang Y, Bi V, Durig T. The impact of HPMC molecular weight and degree of substitution on crystallization inhibition of Felodipine in aqueous media. Ashland: AAPS; 2015.Google Scholar
  67. 67.
    AquaSolve Hydroxypropylmethylcellulose Acetate Succinate. In: Ashland, editor. 2016.Google Scholar
  68. 68.
    Mowiol Polyvinyl Alcohol. In: Clariant, editor. 1999.Google Scholar
  69. 69.
    DiNunzio JC, Brough C, Miller DA, Williams RO, McGinity JW. Fusion processing of itraconazole solid dispersions by KinetiSol® dispersing: a comparative study to hot melt extrusion. J Pharm Sci. 2010;99(3):1239–53.Google Scholar
  70. 70.
    LaFountaine JSP, Leena K, Miller DA, McGinity JW, Williams RO. Mucoadhesive amorphous solid dispersions for sustained release of poorly water soluble drugs. Eur J Pharm Biopharm. 2017;113:157–67.Google Scholar
  71. 71.
    Vasconcelos T, Sarmento B, Costa P. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov Today. 2007;12(23):1068–75.Google Scholar
  72. 72.
    Newman A, Knipp G, Zografi G. Assessing the performance of amorphous solid dispersions. J Pharm Sci. 2012;101(4):1355–77.Google Scholar
  73. 73.
    Darji MA, Lalge RM, Marathe SP, Mulay TD, Fatima T, Alshammari A, et al. Excipient stability in oral solid dosage forms: a review. AAPS PharmSciTech. 2017:1–15.Google Scholar
  74. 74.
    Ambike AA, Mahadik K, Paradkar A. Spray-dried amorphous solid dispersions of simvastatin, a low Tg drug: in vitro and in vivo evaluations. Pharm Res. 2005;22(6):990–8.Google Scholar
  75. 75.
    Berndl G, Rosenberg J, Liepold B, Fastnacht K, Jung T, Roth W, et al., inventors; Abbott Laboratories, assignee. Solid pharmaceutical dosage formulations. United States patent application 11/939,640. 2008.Google Scholar
  76. 76.
    Hughey JR, McGinity JW. Emerging technologies to increase the bioavailability of poorly water-soluble drugs. Formulating Poorly Water Soluble Drugs: Springer; 2012. p. 569–602.Google Scholar
  77. 77.
    Miller DA, Keen JM. KinetiSol®-based amorphous solid dispersions. Amorphous Solid Dispersions: Springer; 2014. p. 567–77.Google Scholar
  78. 78.
    Keen JM, McGinity JW, Williams RO 3rd. Enhancing bioavailability through thermal processing. Int J Pharm. 2013;450(1):185–96.Google Scholar
  79. 79.
    Baert LEC, Verreck G, Thoné D, Inventors; Janssen Pharmaceutica NV, assignee. Antifungal compositions with improved bioavailability. United States patent 6,509,038. 2003 Jan 21.Google Scholar
  80. 80.
    Six K, Berghmans H, Leuner C, Dressman J, Van Werde K, Mullens J, et al. Characterization of solid dispersions of itraconazole and hydroxypropylmethylcellulose prepared by melt extrusion, part II. Pharm Res. 2003;20(7):1047–54.Google Scholar
  81. 81.
    Berndl G, Degenhardt M, Mäegerlein M, Dispersyn G, Inventors; Abbott Gmbh & Co. and Kg, assignee. Itraconazole compositions with improved bioavailability. United States patent 8,486,456. 2013 Jul 16.Google Scholar
  82. 82.
    Chandanais R. Specialty drug approvals: review of 2014 and a forecast for 2015. Pharm Today. 2015;21(1):50–1.Google Scholar
  83. 83.
    Corbett AH, Lim ML, Kaletra KAD. lopinavir/ritonavir. Ann Pharmacother. 2002;36(7–8):1193–203.Google Scholar
  84. 84.
    Chen C, Lu X-H, Yan S, Chai H, Yao Q. HIV protease inhibitor ritonavir increases endothelial monolayer permeability. Biochem Biophys Res Commun. 2005;335(3):874–82.Google Scholar
  85. 85.
    Kessler T, Breitenbach J, Schmidt C, Degenhardt M, Rosenberg J, Krull H, Inventors; Abbott Gmbh & Co., Kg, assignee. Process for producing a solid dispersion of an active ingredient. United States patent application 12/279,415. 2007 Mar 12.Google Scholar
  86. 86.
    Repka MA, Gerding TG, Repka SL, McGinity JW. Influence of plasticizers and drugs on the physical-mechanical properties of hydroxypropylcellulose films prepared by hot melt extrusion. Drug Dev Ind Pharm. 1999;25(5):625–33.Google Scholar
  87. 87.
    Hancock BC, Shamblin SL, Zografi G. Molecular mobility of amorphous pharmaceutical solids below their glass transition temperatures. Pharm Res. 1995;12(6):799–806.Google Scholar
  88. 88.
    Gupta SS, Meena A, Parikh T, Serajuddin AT. Investigation of thermal and viscoelastic properties of polymers relevant to hot melt extrusion, I: polyvinylpyrrolidone and related polymers. J Excipients Food Chem. 2014;5(1):32–45.Google Scholar
  89. 89.
    Meena A, Parikh T, Gupta SS, Serajuddin AT. Investigation of thermal and viscoelastic properties of polymers relevant to hot melt extrusion, II: cellulosic polymers. J Excipients Food Chem. 2014;5(1):46–55.Google Scholar
  90. 90.
    Parikh T, Gupta SS, Meena A, Serajuddin AT. Investigation of thermal and viscoelastic properties of polymers relevant to hot melt extrusion, III: polymethacrylates and polymethacrylic acid based polymers. J Excipients Food Chem. 2014;5(1):56–64.Google Scholar
  91. 91.
    Chirnomas D, Smith AL, Braunstein J, Finkelstein Y, Pereira L, Bergmann AK, et al. Deferasirox pharmacokinetics in patients with adequate versus inadequate response. Blood. 2009;114(19):4009–13.PubMedCentralGoogle Scholar
  92. 92.
    Bashiri-Shahroodi A, Nassab PR, Szabó-Révész P, Rajkó R. Preparation of a solid dispersion by a dropping methodto improve the rate of dissolution of meloxicam. Drug Dev Ind Pharm. 2008;34(7):781–8.Google Scholar
  93. 93.
    Dehghan M, Jafar M. Improving dissolution of meloxicam using solid dispersions. Iran J Pharm Res. 2010:231–8.Google Scholar
  94. 94.
    El-Badry M, Fathy M. Enhancement of the dissolution and permeation rates of meloxicam by formation of its freeze-dried solid dispersions in polyvinylpyrrolidone K-30. Drug Dev Ind Pharm. 2006;32(2):141–50.Google Scholar
  95. 95.
    Ghareeb MM, Abdulrasool AA, Hussein AA, Noordin MI. Kneading technique for preparation of binary solid dispersion of meloxicam with poloxamer 188. AAPS PharmSciTech. 2009;10(4):1206–15.PubMedCentralGoogle Scholar
  96. 96.
    Vijaya Kumar SG, Mishra DN. Preparation and evaluation of solid dispersion of meloxicam with skimmed milk. Yakugaku Zasshi. 2006;126(2):93–7.Google Scholar
  97. 97.
    Haser A, Huang S, Listro T, White D, Zhang F. An approach for chemical stability during melt extrusion of a drug substance with a high melting point. Int J Pharm. 2017;524(1):55–64.Google Scholar
  98. 98.
    Gupta P, Bansal AK. Molecular interactions in celecoxib-PVP-meglumine amorphous system. J Pharm Pharmacol. 2005;57(3):303–10.Google Scholar
  99. 99.
    Albano AA, Desai D, Dinunzio J, Go Z, Iyer RM, Sandhu HK, et al., inventors; Hoffmann-La Roche Inc., assignee. Pharmaceutical composition with improved bioavailability for high melting hydrophobic compound. United States patent application 13/706,390. 2013 Jul 04.Google Scholar
  100. 100.
    Bollag G, Tsai J, Zhang J, Zhang C, Ibrahim P, Nolop K, et al. Vemurafenib: the first drug approved for BRAF-mutant cancer. Nat Rev Drug Discov. 2012;11(11):873–86.Google Scholar
  101. 101.
    Shah N, Sandhu H, Phuapradit W, Pinal R, Iyer R, Albano A, et al. Development of novel microprecipitated bulk powder (MBP) technology for manufacturing stable amorphous formulations of poorly soluble drugs. Int J Pharm. 2012;438(1):53–60.Google Scholar
  102. 102.
    Karlina M, Pozharitskaya O, Kosman V, Ivanova S. Bioavailability of boswellic acids: in vitro/in vivo correlation. Pharm Chem J. 2007;41(11):569–72.Google Scholar
  103. 103.
    Safayhi H, Mack T, Sabieraj J, Anazodo MI, Subramanian LR, Ammon H. Boswellic acids: novel, specific, nonredox inhibitors of 5-lipoxygenase. J Pharmacol Exp Ther. 1992;261(3):1143–6.Google Scholar
  104. 104.
    Park B, Sung B, Yadav VR, Cho SG, Liu M, Aggarwal BB. Acetyl-11-keto-ß-boswellic acid suppresses invasion of pancreatic cancer cells through the downregulation of CXCR4 chemokine receptor expression. Int J Cancer. 2011;129(1):23–33.PubMedCentralGoogle Scholar
  105. 105.
    Krüger P, Kanzer J, Hummel J, Fricker G, Schubert-Zsilavecz M, Abdel-Tawab M. Permeation of Boswellia extract in the Caco-2 model and possible interactions of its constituents KBA and AKBA with OATP1B3 and MRP2. Eur J Pharm Sci. 2009;36(2):275–84.Google Scholar
  106. 106.
    Krüger P, Daneshfar R, Eckert GP, Klein J, Volmer DA, Bahr U, et al. Metabolism of boswellic acids in vitro and in vivo. Drug Metab Dispos. 2008;36(6):1135–42.Google Scholar
  107. 107.
    Raghavan S, Trividic A, Davis A, Hadgraft J. Crystallization of hydrocortisone acetate: influence of polymers. Int J Pharm. 2001;212(2):213–21.Google Scholar
  108. 100.
    Tanaka N, Imai K, Okimoto K, Ueda S, Tokunaga Y, Ibuki R, et al. Development of novel sustained-release system, disintegration-controlled matrix tablet (DCMT) with solid dispersion granules of nilvadipine (II): in vivo evaluation. J Control Release. 2006;112(1):51–6.Google Scholar
  109. 101.
    Miller DA, DiNunzio JC, Yang W, McGinity JW, Williams RO 3rd. Enhanced in vivo absorption of itraconazole via stabilization of supersaturation following acidic-to-neutral pH transition. Drug Dev Ind Pharm. 2008;34(8):890–902.Google Scholar
  110. 102.
    Kolter K, Karl M, Gryczke A, Ludwigshafen am Rhein B. Hot-melt extrusion with BASF pharma polymers: extrusion compendium: BASF; 2012.Google Scholar
  111. 111.
    Sarode AL, Obara S, Tanno FK, Sandhu H, Iyer R, Shah N. Stability assessment of hypromellose acetate succinate (HPMCAS) NF for application in hot melt extrusion (HME). Carbohydr Polym. 2014;101:146–53.Google Scholar
  112. 112.
    Kwong AD, Kauffman RS, Hurter P, Mueller P. Discovery and development of telaprevir: an NS3-4A protease inhibitor for treating genotype 1 chronic hepatitis C virus. Nat Biotechnol. 2011;29(11):993–1003.Google Scholar
  113. 113.
    Hadida S, Van Goor F, Dinehart K, Looker AR, Mueller P, Grootenhuis PD. Case history: Kalydeco®(VX-770, Ivacaftor), a CFTR potentiator for the treatment of patients with cystic fibrosis and the G551D-CFTR mutation. Annu Rep Med Chem. 2014;49:383–98.Google Scholar
  114. 114.
    Maniruzzaman M, Morgan DJ, Mendham AP, Pang J, Snowden MJ, Douroumis D. Drug–polymer intermolecular interactions in hot-melt extruded solid dispersions. Int J Pharm. 2013;443(1):199–208.Google Scholar
  115. 115.
    Andrews GP, Jones DS, Diak OA, McCoy CP, Watts AB, McGinity JW. The manufacture and characterisation of hot-melt extruded enteric tablets. Eur J Pharm Biopharm. 2008;69(1):264–73.Google Scholar
  116. 116.
    Bruce C, Fegely KA, Rajabi-Siahboomi AR, McGinity JW. Crystal growth formation in melt extrudates. Int J Pharm. 2007;341(1):162–72.Google Scholar
  117. 117.
    Wyttenbach N, Janas C, Siam M, Lauer ME, Jacob L, Scheubel E, et al. Miniaturized screening of polymers for amorphous drug stabilization (SPADS): rapid assessment of solid dispersion systems. Eur J Pharm Biopharm. 2013;84(3):583–98.Google Scholar
  118. 118.
    Lin SY, Yu HL. Thermal stability of methacrylic acid copolymers of Eudragits L, S, and L30D and the acrylic acid polymer of carbopol. J Polym Sci A Polym Chem. 1999;37(13):2061–7.Google Scholar
  119. 119.
    Alexy P, Kachova D, Kršiak M, Bakoš D, Šimková B. Poly (vinyl alcohol) stabilisation in thermoplastic processing. Polym Degrad Stab. 2002;78(3):413–21.Google Scholar
  120. 120.
    Alexy P, Lacík I, Šimková B, Bakoš D, Prónayová N, Liptaj T, et al. Effect of melt processing on thermo-mechanical degradation of poly (vinyl alcohol) s. Polym Degrad Stab. 2004;85(2):823–30.Google Scholar
  121. 121.
    Tran PH-L, Tran TT-D, Park JB, Lee B-J. Controlled release systems containing solid dispersions: strategies and mechanisms. Pharm Res. 2011;28(10):2353–78.Google Scholar
  122. 122.
    Reynolds TD, Mitchell SA, Balwinski KM. Investigation of the effect of tablet surface area/volume on drug release from hydroxypropylmethylcellulose controlled-release matrix tablets. Drug Dev Ind Pharm. 2002;28(4):457–66.Google Scholar
  123. 123.
    Tajarobi F, Larsson A, Matic H, Abrahmsén-Alami S. The influence of crystallization inhibition of HPMC and HPMCAS on model substance dissolution and release in swellable matrix tablets. Eur J Pharm Biopharm. 2011;78(1):125–33.Google Scholar
  124. 124.
    Banerjee A, Lee J, Mitragotri S. Intestinal mucoadhesive devices for oral delivery of insulin. Bioeng Transl Med. 2016.Google Scholar
  125. 125.
    Mansuri S, Kesharwani P, Jain K, Tekade RK, Jain N. Mucoadhesion: a promising approach in drug delivery system. React Funct Polym. 2016;100:151–72.Google Scholar
  126. 126.
    Gupta V, Hwang BH, Lee J, Anselmo AC, Doshi N, Mitragotri S. Mucoadhesive intestinal devices for oral delivery of salmon calcitonin. J Control Release. 2013;172(3):753–62.Google Scholar
  127. 127.
    Sauceau M, Fages J, Common A, Nikitine C, Rodier E. New challenges in polymer foaming: a review of extrusion processes assisted by supercritical carbon dioxide. Prog Polym Sci. 2011;36(6):749–66.Google Scholar
  128. 128.
    Dinunzio J. Applications of Melt-Extrusion for Continuous Manufacturing of Novel Drug Products. 2016 AAPS Annual Meeting & Exposition; Denver, CO2016.Google Scholar
  129. 129.
    Fukuda M, Peppas NA, McGinity JW. Floating hot-melt extruded tablets for gastroretentive controlled drug release system. J Control Release. 2006;115(2):121–9.Google Scholar
  130. 130.
    Nikitine C, Rodier E, Sauceau M, Letourneau JJ, Fages J. Controlling the structure of a porous polymer by coupling supercritical CO2 and single screw extrusion process. J Appl Polym Sci. 2010;115(2):981–90.Google Scholar
  131. 131.
    Verreck G, Decorte A, Li H, Tomasko D, Arien A, Peeters J, et al. The effect of pressurized carbon dioxide as a plasticizer and foaming agent on the hot melt extrusion process and extrudate properties of pharmaceutical polymers. J Supercrit Fluids. 2006;38(3):383–91.Google Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2018

Authors and Affiliations

  • Daniel J. Ellenberger
    • 1
    • 2
  • Dave A. Miller
    • 1
  • Robert O. WilliamsIII
    • 2
  1. 1.DisperSol Technologies, LLCGeorgetownUSA
  2. 2.College of PharmacyThe University of Texas at AustinAustinUSA

Personalised recommendations