AAPS PharmSciTech

, Volume 19, Issue 3, pp 1320–1336 | Cite as

Methotrexate Aspasomes Against Rheumatoid Arthritis: Optimized Hydrogel Loaded Liposomal Formulation with In Vivo Evaluation in Wistar Rats

  • Saikat Ghosh
  • Biswajit Mukherjee
  • Shreyasi Chaudhuri
  • Tanushree Roy
  • Alankar Mukherjee
  • Soma Sengupta
Research Article

Abstract

Aspasomes of methotrexate with antioxidant, ascorbyl palmitate, were developed and optimized using factorial design by varying parameters such as lipid molar ratio, drug to lipid molar ratio, and type of hydration buffer for transdermal delivery for disease modifying activity in rheumatoid arthritis (RA). Aspasomes were characterized by drug-excipients interaction, particle size analysis, determination of zeta potential, entrapment efficiency, and surface properties. The best formulation was loaded into hydrogel for evaluation of in vitro drug release and tested in vivo against adjuvant induced arthritis model in wistar rats, by assessing various physiological, biochemical, hematological, and histopathological parameters. Optimized aspasome formulation exhibited smooth surface with particle size 386.8 nm, high drug loading (19.41%), negative surface potential, and controlled drug release in vitro over 24 h with a steady permeation rate. Transdermal application of methotrexate-loaded aspasome hydrogel for 12 days reduced rat paw diameter (21.25%), SGOT (40.43%), SGPT (54.75%), TNFα (33.99%), IL β (34.79%), cartilage damage (84.41%), inflammation (82.37%), panus formation (84.38%), and bone resorption (80.52%) as compared to arthritic control rats. Free methotrexate-treated group showed intermediate effects. However, drug-free aspasome treatment did not show any effect. The experimental results indicate a positive outcome in development of drug-loaded therapeutically active carrier system which presents a non-invasive controlled release transdermal formulation with good drug loading, drug permeation rate, and having better disease modifications against RA than the free drug, thereby providing a more attractive therapeutic strategy for rheumatoid disease management.

KEY WORDS

aspasomes rheumatoid arthritis ascorbyl palmitate methotrexate transdermal delivery 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Kraft JC, Freeling JP, Wang Z, Ho RJ. Emerging research and clinical development trends of liposome and lipid nanoparticle drug delivery systems. J Pharm Sci. 2014;103(1):29–52.  https://doi.org/10.1002/jps.23773.CrossRefPubMedGoogle Scholar
  2. 2.
    Bae YH, Park K. Targeted drug delivery to tumors: myths, reality and possibility. J Control Release. 2011;153(3):198–205.  https://doi.org/10.1016/j.jconrel.2011.06.001.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Gopinath D, Ravi D, Rao BR, Apte SS, Renuka D, Rambhau D. Ascorbylpalmitate vesicles (Aspasomes): formation, characterization and applications. Int J Pharm. 2004;271(1–2):95–113.  https://doi.org/10.1016/j.ijpharm.2003.10.032.CrossRefPubMedGoogle Scholar
  4. 4.
    Jukanti R, Gopinath D, Apte SS, Rambhau D. Biodistribution of ascorbylpalmitate loaded doxorubicin pegylated liposomes in solid tumor bearing mice. J Microencapsul. 2011;28(2):142–9.  https://doi.org/10.3109/02652048.2010.542496.CrossRefPubMedGoogle Scholar
  5. 5.
    Lee S, Lee J, Choi YW. Skin permeation enhancement of ascorbyl palmitate by liposomal hydrogel (lipogel) formulation and electrical assistance. Biol Pharm Bull. 2007;30(2):393–6.  https://doi.org/10.1248/bpb.30.393.CrossRefPubMedGoogle Scholar
  6. 6.
    Moribe K, Limwikrant W, Higashi K, Yamamoto K. Drug nanoparticle formulation using ascorbic acid derivatives. J Drug Deliv. 2011;2011:1–9.  https://doi.org/10.1155/2011/138929.CrossRefGoogle Scholar
  7. 7.
    Karande P, Mitragotri S. Enhancement of transdermal drug delivery via synergistic action of chemicals. Biochim Biophys Acta. 2009;1788(11):2362–73.  https://doi.org/10.1016/j.bbamem.2009.08.015.CrossRefPubMedGoogle Scholar
  8. 8.
    Cronstein BN. Low-dose methotrexate: a mainstay in the treatment of rheumatoid arthritis. Pharmacol Rev. 2005;57(2):163–72.  https://doi.org/10.1124/pr.57.2.3.CrossRefPubMedGoogle Scholar
  9. 9.
    Gerards AH, de Lathouder S, de Groot ER, Dijkmans BAC, Aarden LA. Inhibition of cytokine production by methotrexate. Studies in healthy volunteers, patients with rheumatoid arthritis. Rheumatology. 2003;42(10):1189–96.  https://doi.org/10.1093/rheumatology/keg323.CrossRefPubMedGoogle Scholar
  10. 10.
    Gottschalk O, Metz P, Dao Trong ML, Altenberger S, Jansson V, Mutschler W, et al. Therapeutic effect of methotrexate encapsulated in cationic liposomes (EndoMTX) in comparison to free methotrexate in an antigen-induced arthritis study in vivo. Scand J Rheumatol. 2015;44(6):456–63.  https://doi.org/10.3109/03009742.2015.1030448.
  11. 11.
    Garg NK, Singh B, Tyagi RK, Sharma G, Katare OP. Effective transdermal delivery of methotrexate through nanostructured lipid carriers in an experimentally induced arthritis model. Colloids Surf B Biointerfaces. 2016;147:17–24.  https://doi.org/10.1016/j.colsurfb.2016.07.046.CrossRefPubMedGoogle Scholar
  12. 12.
    Prabhu P, Shetty R, Koland M, Vijayanarayana K, Vijayalakshmi KK, Nairy MH, et al. Investigation of nano lipid vesicles of methotrexate for anti-rheumatoid activity. Int J Nanomedicine. 2012;7:177–86.  https://doi.org/10.2147/IJN.S25310.
  13. 13.
    Roy T, Ghosh S. Animal models of rheumatoid arthritis: correlation and usefulness with human rheumatoid arthritis. Indo Amer J Pharm Res. 2013;3:6131–42.Google Scholar
  14. 14.
    Chang RK, Raw A, Lionberger R, Yu L. Generic development of topical dermatologic products: formulation development, process development, and testing of topical dermatologic products. AAPS J. 2013;15(1):41–52.  https://doi.org/10.1208/s12248-012-9411-0.CrossRefPubMedGoogle Scholar
  15. 15.
    Grijalvo S, Mayr J, Eritja R, Díaz DD. Biodegradable liposome-encapsulated hydrogels for biomedical applications: a marriage of convenience. Biomater Sci. 2016;4(4):555–74.  https://doi.org/10.1039/C5BM00481K.CrossRefPubMedGoogle Scholar
  16. 16.
    De P, Damodharan N, Mallick S, Mukherjee B. Development and evaluation of nefopam transdermal matrix patch system in human volunteers. PDA J Pharm Sci Technol. 2009;63(6):537–46.PubMedGoogle Scholar
  17. 17.
    Pattnaik G, Sinha B, Mukherjee B, Ghosh S, Basak S, Mondal S, et al. Submicron-size biodegradable polymer-based didanosine particles for treating HIV at early stage: an in vitro study. J Microencapsul. 2012;29(7):666–76.  https://doi.org/10.3109/02652048.2012.680509.
  18. 18.
    Ghosh S, Mondal L, Chakraborty S, Mukherjee B. Early stage HIV management and reduction of stavudine-induced hepatotoxicity in rats by experimentally developed biodegradable nanoparticles. AAPS PharmSciTech. 2017;18(3):697–709.  https://doi.org/10.1208/s12249-016-0539-6.CrossRefPubMedGoogle Scholar
  19. 19.
    Ng SF, Rouse J, Sanderson D, Eccleston GA. Comparative study of transmembrane diffusion and permeation of ibuprofen across synthetic membranes using Franz diffusion cells. Pharmaceutics. 2010;2(2):209–23.  https://doi.org/10.3390/pharmaceutics2020209.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Sinicoa C, Manconia M, Peppib M, Laia F, Valentia D, Fadda AM. Liposomes as carriers for dermal delivery of tretinoin: in vitro evaluation of drug permeation and vesicle–skin interaction. J Control Release. 2005;103(1):123–36.  https://doi.org/10.1016/j.jconrel.2004.11.020.CrossRefGoogle Scholar
  21. 21.
    Takeuchi H, Mano Y, Terasaka S, Sakurai T, Furuya A, Urano H, et al. Usefulness of rat skin as a substitute for human skin in the in vitro skin permeation study. Exp Anim. 2011;60(4):373–84.  https://doi.org/10.1538/expanim.60.373.
  22. 22.
    Roy T, Banerjee I, Ghosh S, Dhali RS, Pati AD, Tripathi SK. Effects of co-treatment with pioglitazone and methotrexate on experimentally induced rheumatoid arthritis in Wistar albino rats. Indian J Pharmacol. 2017;49(2):168–75.  https://doi.org/10.4103/ijp.IJP_523_15.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Nair AB, Jacob S. A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm. 2016;7(2):27–31.  https://doi.org/10.4103/0976-0105.177703.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Martínez A, Fernández-Arquero M, Pascual-Salcedo D, Conejero L, Alves H, Balsa A, et al. Primary association of tumour necrosis factor-region genetic markers with susceptibility to rheumatoid arthritis. Arthritis Rheum. 2000;43(6):1366–70.  https://doi.org/10.1002/1529-0131(200006)43:6<1366::AID-ANR21>3.0.CO;2-S.
  25. 25.
    Thorbecke GJ, Shah R, Leu CH, Kuruvilla AP, Hardison AM, Palladino MA. Involvement of endogenous tumor necrosis factor alpha and transforming growth factor beta during induction of collagen type II arthritis in mice. Proc Natl Acad Sci U S A. 1992;89(16):7375–9.  https://doi.org/10.1073/pnas.89.16.7375.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Dubey V, Mishra D, Dutta T, Nahar M, Saraf DK, Jain NK. Dermal and transdermal delivery of an anti-psoriatic agent via ethanolic liposomes. J Control Release. 2007;123(2):148–54.  https://doi.org/10.1016/j.jconrel.2007.08.005.CrossRefPubMedGoogle Scholar
  27. 27.
    Gosenca M, Obreza A, Pečar S, Gašperlin M. A new approach for increasing ascorbyl palmitate stability by addition of non-irritant co-antioxidant. AAPS PharmSciTech. 2010;11(3):1485–92.  https://doi.org/10.1208/s12249-010-9507-8.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Andersen FA. Final report on the safety assessment of ascorbylpalmitate, ascorbyldipalmitate, ascorbyl stearate, erythorbic acid, and sodium erythorbate. Int J Toxicol. 1999;18(3):1–26.CrossRefGoogle Scholar
  29. 29.
    Anderson M, Omri A. The effect of different lipid components on the in vitro stability and release kinetics of liposome formulations. Drug Deliv. 2004;11(1):33–9.  https://doi.org/10.1080/10717540490265243.CrossRefPubMedGoogle Scholar
  30. 30.
    Kristl J, Volka B, Gasperlin M, Sentjurc M, Jurkovic P. Effect of colloidal carriers on ascorbylpalmitate stability. Eur J Pharm Sci. 2003;19(4):181–9.  https://doi.org/10.1016/S0928-0987(03)00104-0.CrossRefPubMedGoogle Scholar
  31. 31.
    Obeida MA, Khadraa I, Mullena A, Tatea RJ, Ferroa VA. The effects of hydration media on the characteristics of non-ionic surfactant vesicles (NISV) prepared by microfluidics. Int J Pharm. 2017;516(1–2):52–60.  https://doi.org/10.1016/j.ijpharm.2016.11.015.CrossRefGoogle Scholar
  32. 32.
    Ruckmani K, Sankar V. Formulation and optimization of zidovudine niosomes. AAPS PharmSciTech. 2010;11(3):1119–27.  https://doi.org/10.1208/s12249-010-9480-2.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Ratnam DV, Ankola DD, Bhardwaj V, Sahana DK, Ravi Kumar MNV. Role of antioxidants in prophylaxis and therapy: a pharmaceutical perspective. J Control Release. 2006;113(3):189–207.  https://doi.org/10.1016/j.jconrel.2006.04.015.CrossRefPubMedGoogle Scholar
  34. 34.
    Chibowski E, Szcześ A. Zeta potential and surface charge of DPPC and DOPC liposomes in the presence of PLC enzyme. Adsorption. 2016;22(4):755–65.  https://doi.org/10.1007/s10450-016-9767-z.CrossRefGoogle Scholar
  35. 35.
    Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013;8(1):102.  https://doi.org/10.1186/1556-276X-8-102.
  36. 36.
    Hoarea TR, Kohane DS. Hydrogels in drug delivery: progress and challenges. Polymer. 2008;49(8):1993–2007.  https://doi.org/10.1016/j.polymer.2008.01.027.CrossRefGoogle Scholar
  37. 37.
    Dash S, Murthy PN, Nath L, Chowdhury P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm. 2010;67(3):217–23.PubMedGoogle Scholar
  38. 38.
    Abd E, Yousef SA, Pastore MN, Telaprolu K, Mohammed YH, Namjoshi S, et al. Skin models for the testing of transdermal drugs. Clin Pharmacol. 2016;8:163–76.  https://doi.org/10.2147/CPAA.S64788.
  39. 39.
    Chung CP, Avalos I, Raggi P, Stein CM. Atherosclerosis and inflammation: insights from rheumatoid arthritis. Clin Rheumatol. 2007;26(8):1228–33.  https://doi.org/10.1007/s10067-007-0548-7.CrossRefPubMedGoogle Scholar
  40. 40.
    Snekhalatha U, Anburajan M, Venkatraman B, Menaka M. Evaluation of complete Freund’s adjuvant-induced arthritis in a Wistar rat model: comparison of thermography and histopathology. Z Rheumatol. 2013;72(4):375–82.  https://doi.org/10.1007/s00393-012-1083-8.CrossRefPubMedGoogle Scholar
  41. 41.
    Asquith DL, Miller AM, McInnes IB, Liew FY. Animal models of rheumatoid arthritis. Eur J Immunol. 2009;39(8):2040–4.  https://doi.org/10.1002/eji.200939578.CrossRefPubMedGoogle Scholar
  42. 42.
    Goodson T, Morgan SL, Carlee JR, Baggott JE. The energy cost of adjuvant-induced arthritis in rats. Arthritis Rheum. 2003;48(10):2979–82.  https://doi.org/10.1002/art.11274.CrossRefPubMedGoogle Scholar
  43. 43.
    Somasundaran S, Sadique J, Subramoniam A. In vitro absorption of [14C] leucine during inflammation and the effect of anti-inflammatory drugs in the jejunum of rats. Biochem Med. 1983;29(2):259–64.  https://doi.org/10.1016/0006-2944(83)90046-7.CrossRefGoogle Scholar
  44. 44.
    Stagakis I, Bertsias G, Karvounaris S, Kavousanaki M, Virla D, Raptopoulou A, et al. Anti-tumor necrosis factor therapy improves insulin resistance, beta cell function and insulin signaling in active rheumatoid arthritis patients with high insulin resistance. Arthritis Res Ther. 2012;14(3):R141.  https://doi.org/10.1186/ar3874.
  45. 45.
    Romeo GR, Lee J, Shoelson SE. Metabolic syndrome, insulin resistance, and roles of inflammation-mechanisms and therapeutic targets. Arterioscler Thromb Vasc Biol. 2012;32(8):1771–6.  https://doi.org/10.1161/ATVBAHA.111.241869.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Feldmann M, Brennan FM, Foxwell BM, Maini RN. The role of TNF alpha and IL-1 in rheumatoid arthritis. Curr Dir Autoimmun. 2001;3:188–99.CrossRefPubMedGoogle Scholar
  47. 47.
    McInnes IB, Schett G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat Rev Immunol. 2007;7(6):429–42.  https://doi.org/10.1038/nri2094.CrossRefPubMedGoogle Scholar
  48. 48.
    Kinne RW, Brauer R, Stuhlmuller B, Kinne RW, Bräuer R, Stuhlmüller B, et al. Macrophages in rheumatoid arthritis. Arthritis Res. 2000;2(3):189–202.  https://doi.org/10.1186/ar86.
  49. 49.
    Karie S, Gandjbakhch F, Janus N, Launay-Vacher V, Rozenberg S, Mai Ba CU, et al. Kidney disease in RA patients: prevalence and implication on RA-related drugs management: the MATRIX study. Rheumatology (Oxford). 2008;47(3):350–4.  https://doi.org/10.1093/rheumatology/kem370.
  50. 50.
    Selmi C, De Santis M, Gershwin ME. Liver involvement in subjects with rheumatic disease. Arthritis Res Ther. 2011;13(3):226.  https://doi.org/10.1186/ar3319.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Rajkapoor B, Ravichandran V, Gobinath M, Anbu J, Harikrishnan N, Sumithra M, et al. Effect of Bauhinia variegata on complete Freund’s adjuvant induced arthritis in rats. J Pharmacol Toxicol. 2007;2(5):465–72.Google Scholar
  52. 52.
    Ormseth MJ, Oeser AM, Cunningham A, Bian A, Shintani A, Solus J, et al. Peroxisome proliferator-activated receptor gamma agonist effect on rheumatoid arthritis: a randomized controlled trial. Arthritis Res Ther. 2013;15(5):R110.  https://doi.org/10.1186/ar4290.
  53. 53.
    Trotta M, Peira E, Carlotti ME, Gallarate M. Deformable liposomes for dermal administration of methotrexate. Int J Pharm. 2004;270(1-2):119–25.  https://doi.org/10.1016/j.ijpharm.2003.10.006.CrossRefPubMedGoogle Scholar
  54. 54.
    Alvarez-Figueroa MJ, Delgado-Charro MB, Blanco-Mèndez J. Passive and iontophoretic transdermal penetration of methotrexate. Int J Pharm. 2001;212(1):101–7.  https://doi.org/10.1016/S0378-5173(00)00599-8.CrossRefPubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2017

Authors and Affiliations

  • Saikat Ghosh
    • 1
  • Biswajit Mukherjee
    • 1
  • Shreyasi Chaudhuri
    • 2
  • Tanushree Roy
    • 3
  • Alankar Mukherjee
    • 1
  • Soma Sengupta
    • 1
  1. 1.Department of Pharmaceutical TechnologyJadavpur UniversityKolkataIndia
  2. 2.Department of Quality AssuranceParul Institute of PharmacyVadodaraIndia
  3. 3.Department of Clinical and Experimental PharmacologyCalcutta School of Tropical MedicineKolkataIndia

Personalised recommendations