AAPS PharmSciTech

, Volume 19, Issue 3, pp 1152–1159 | Cite as

Application of Fluorescence Emission for Characterization of Albendazole and Ricobendazole Micellar Systems: Elucidation of the Molecular Mechanism of Drug Solubilization Process

  • Josefina Priotti
  • Darío Leonardi
  • Guillermo Pico
  • María C. Lamas
Research Article
  • 43 Downloads

Abstract

Albendazole (ABZ) and ricobendazole (RBZ) are referred to as class II compounds in the Biopharmaceutical Classification System. These drugs exhibit poor solubility, which profoundly affects their oral bioavailability. Micellar systems are excellent pharmaceutical tools to enhance solubilization and absorption of poorly soluble compounds. Polysorbate 80 (P80), poloxamer 407 (P407), sodium cholate (Na-C), and sodium deoxycholate (Na-DC) have been selected as surfactants to study the solubilization process of these drugs. Fluorescence emission was applied in order to obtain surfactant/fluorophore (S/F) ratio, critical micellar concentration, protection efficiency of micelles, and thermodynamic parameters. Systems were characterized by their size and zeta potential. A blue shift from 350 to 345 nm was observed when ABZ was included in P80, Na-DC, and Na-C micelles, while RBZ showed a slight change in the fluorescence band. P80 showed a significant solubilization capacity: S/F values were 688 for ABZ at pH 4 and 656 for RBZ at pH 6. Additionally, P80 micellar systems presented the smallest size (10 nm) and their size was not affected by pH change. S/F ratio for bile salts was tenfold higher than for the other surfactants. Quenching plots were linear and their constant values (2.17/M for ABZ and 2.29/M for RBZ) decreased with the addition of the surfactants, indicating a protective effect of the micelles. Na-DC showed better protective efficacy for ABZ and RBZ than the other surfactants (constant values 0.54 and 1.57/M, respectively), showing the drug inclusion into the micelles. Entropic parameters were negative in agreement with micelle formation.

KEY WORDS

micellar systems albendazole ricobendazole solubilization polysorbate 80 poloxamer 407 bile salts fluorescence 

Notes

Acknowledgements

J.P. is grateful to the CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas) for a Doctoral Fellowship. This work was supported by the Universidad Nacional de Rosario, CONICET (Project No. PIP 112-201001-00194) and Agencia Nacional de Promoción Científica y Tecnológica (Project No. PICT 2006-1126). The authors would like to thank Laura Gutierrez and Antonella Giorello from Facultad de Ingeniería Química, Universidad Nacional del Litoral, for Malvern Zetasizer Nano ZS90. We would like to thank the staff from the English Department (Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario) for the language correction of the manuscript.

References

  1. 1.
    Uneke C. Soil transmitted helminth infections and schistosomiasis in school age children in sub-Saharan Africa: efficacy of chemotherapeutic intervention since World Health Assembly Resolution 2001. Tanzan J Health Res. 2010;12(1):86–99.CrossRefPubMedGoogle Scholar
  2. 2.
    Priotti J, Codina AV, Leonardi D, Vasconi MD, Hinrichsen LI, Lamas MC. Albendazole microcrystal formulations based on chitosan and cellulose derivatives: physicochemical characterization and in vitro parasiticidal activity in Trichinella spiralis adult worms. AAPS PharmSciTech. 2017;18(4):947–56.  https://doi.org/10.1208/s12249-016-0659-z.CrossRefPubMedGoogle Scholar
  3. 3.
    Mascarini-Serra L. Prevention of soil-transmitted helminth infection. J Glob Infect Dis. 2011;3(2):175–82.  https://doi.org/10.4103/0974-777X.81696.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Castro L, Kviecinski MR, Ourique F, Parisotto EB, Grinevicius V, Correia JFG, et al. Albendazole as a promising molecule for tumor control. Redox Biol. 2016;10:90–9.  https://doi.org/10.1016/j.redox.2016.09.013.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Pranzo MB, Cruickshank D, Coruzzi M, Caira MR, Bettini R. Enantiotropically related albendazole polymorphs. J Pharm Sci. 2010;99(9):3731–42.  https://doi.org/10.1002/jps.22072.CrossRefPubMedGoogle Scholar
  6. 6.
    Wu Z, Razzak M, Tucker IG, Medlicott NJ. Physicochemical characterization of ricobendazole: I. Solubility, lipophilicity, and ionization characteristics. J Pharm Sci. 94(5):983–93.Google Scholar
  7. 7.
    Yadav D, Kumar N. Nanonization of curcumin by antisolvent precipitation: process development, characterization, freeze drying and stability performance. Int J Pharm. 2014;477(1–2):564–77.  https://doi.org/10.1016/j.ijpharm.2014.10.070.CrossRefPubMedGoogle Scholar
  8. 8.
    García A, Leonardi D, Salazar MO, Lamas MC. Modified β-cyclodextrin inclusion complex to improve the physicochemical properties of albendazole. Complete in vitro evaluation and characterization. PLoS One. 2014;9(2):e88234.  https://doi.org/10.1371/journal.pone.0088234.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Castro SG, Bruni SS, Lanusse CE, Allemandi DA, Palma SD. Improved albendazole dissolution rate in pluronic 188 solid dispersions. AAPS PharmSciTech. 2010;11(4):1518–25.  https://doi.org/10.1208/s12249-010-9517-6.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Wu Z, Razzak M, Tucker IG, Medlicott NJ. Physicochemical characterization of ricobendazole: I. Solubility, lipophilicity, and ionization characteristics. J Pharm Sci. 2005;94(5):983–93.  https://doi.org/10.1002/jps.20282.CrossRefPubMedGoogle Scholar
  11. 11.
    Wu Z, Tucker IG, Razzak M, Medlicott NJ. Stability of ricobendazole in aqueous solutions. J Pharm Biomed Anal. 2009;49(5):1282–6.  https://doi.org/10.1016/j.jpba.2009.02.032.CrossRefPubMedGoogle Scholar
  12. 12.
    Fernández L, Sigal E, Otero L, Silber J, Santo M. Solubility improvement of an anthelmintic benzimidazole carbamate by association with dendrimers. Braz J Chem Eng. 2011;28(4):679–89.  https://doi.org/10.1590/S0104-66322011000400013.CrossRefGoogle Scholar
  13. 13.
    Motlagh NSH, Parvin P, Ghasemi F, Atyabi F. Fluorescence properties of several chemotherapy drugs: doxorubicin, paclitaxel and bleomycin. Biomed Opt Express. 2016;7(6):2400–6.  https://doi.org/10.1364/BOE.7.002400.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Salahuddin, Shaharyar M, Mazumder A. Benzimidazoles: a biologically active compounds. Arab J Chem. 2017;10(1):S157–S73.  https://doi.org/10.1016/j.arabjc.2012.07.017.CrossRefGoogle Scholar
  15. 15.
    Shvadchak VV, Kucherak O, Afitska K, Dziuba D, Yushchenko DA. Environmentally sensitive probes for monitoring protein-membrane interactions at nanomolar concentrations. Biochim Biophys Acta. 2017;1859(5):852–9.  https://doi.org/10.1016/j.bbamem.2017.01.021.CrossRefPubMedGoogle Scholar
  16. 16.
    Calafato NR, Picó G. Griseofulvin and ketoconazole solubilization by bile salts studied using fluorescence spectroscopy. Colloids Surf B Biointerfaces. 2006;47(2):198–204.  https://doi.org/10.1016/j.colsurfb.2005.01.007.CrossRefPubMedGoogle Scholar
  17. 17.
    Piñeiro L, Novo M, Al-Soufi W. Fluorescence emission of pyrene in surfactant solutions. Adv Colloid Interface Sci. 2015;215(Supplement C):1–12.CrossRefPubMedGoogle Scholar
  18. 18.
    Stępnik KE, Malinowska I. Determination of binding properties of ampicillin in drug-human serum albumin standard solution using N-vinylpyrrolidone copolymer combined with the micellar systems. Talanta. 2017;162:241–8.  https://doi.org/10.1016/j.talanta.2016.09.054.CrossRefPubMedGoogle Scholar
  19. 19.
    Ashok B, Arleth L, Hjelm RP, Rubinstein I, Önyüksel H. In vitro characterization of PEGylated phospholipid micelles for improved drug solubilization: effects of PEG chain length and PC incorporation. J Pharm Sci. 2004;93(10):2476–87.  https://doi.org/10.1002/jps.20150.CrossRefPubMedGoogle Scholar
  20. 20.
    Calabrese I, Gelardi G, Merli M, Liveri MLT, Sciascia L. Clay-biosurfactant materials as functional drug delivery systems: slowing down effect in the in vitro release of cinnamic acid. Appl Clay Sci. 2017;135:567–74.  https://doi.org/10.1016/j.clay.2016.10.039.CrossRefGoogle Scholar
  21. 21.
    Croy SR, Kwon GS. Polysorbate 80 and cremophor EL micelles deaggregate and solubilize nystatin at the core–corona interface. J Pharm Sci. 2005;94(11):2345–54.  https://doi.org/10.1002/jps.20301.CrossRefPubMedGoogle Scholar
  22. 22.
    Cheng M, Zeng G, Huang D, Yang C, Lai C, Zhang C, et al. Advantages and challenges of Tween 80 surfactant-enhanced technologies for the remediation of soils contaminated with hydrophobic organic compounds. Chem Eng J. 2017;314:98–113.  https://doi.org/10.1016/j.cej.2016.12.135.CrossRefGoogle Scholar
  23. 23.
    Ćirin D, Krstonošić V, Poša M. Properties of poloxamer 407 and polysorbate mixed micelles: influence of polysorbate hydrophobic chain. J Ind Eng Chem. 2017;47:194–201.  https://doi.org/10.1016/j.jiec.2016.11.032.CrossRefGoogle Scholar
  24. 24.
    Adams ML, Lavasanifar A, Kwon GS. Amphiphilic block copolymers for drug delivery. J Pharm Sci. 2003;92(7):1343–55.  https://doi.org/10.1002/jps.10397.CrossRefPubMedGoogle Scholar
  25. 25.
    Pitto-Barry A, Barry NPE. Pluronic[registered sign] block-copolymers in medicine: from chemical and biological versatility to rationalisation and clinical advances. Polym Chem. 2014;5(10):3291–7.  https://doi.org/10.1039/C4PY00039K.CrossRefGoogle Scholar
  26. 26.
    Chavda S, Danino D, Aswal VK, Singh K, Marangoni DG, Bahadur P. Microstructure and transitions in mixed micelles of cetyltrimethylammonium tosylate and bile salts. Colloids Surf A Physicochem Eng Asp. 2017;513:223–33.  https://doi.org/10.1016/j.colsurfa.2016.10.047.CrossRefGoogle Scholar
  27. 27.
    Holm R, Müllertz A, Mu H. Bile salts and their importance for drug absorption. Int J Pharm. 2013;453(1):44–55.  https://doi.org/10.1016/j.ijpharm.2013.04.003.CrossRefPubMedGoogle Scholar
  28. 28.
    Hidalgo-Rodríguez M, Fuguet E, Ràfols C, Rosés M. Solute–solvent interactions in micellar electrokinetic chromatography: VII. Characterization of sodium cholate–sodium deoxycholate mixed-micellar systems. J Chromatogr A. 2010;1217(10):1701–8.  https://doi.org/10.1016/j.chroma.2010.01.001.CrossRefPubMedGoogle Scholar
  29. 29.
    Selvam S, Andrews ME, Mishra AK. A photophysical study on the role of bile salt hydrophobicity in solubilizing amphotericin B aggregates. J Pharm Sci. 2009;98(11):4153–60.  https://doi.org/10.1002/jps.21718.CrossRefPubMedGoogle Scholar
  30. 30.
    Martin AN, Bustamante P. Physical pharmacy: physical chemical principles in the pharmaceutical sciences. 4th ed. Philadelphia: Lea & Febiger; 1993.Google Scholar
  31. 31.
    Sepúlveda L, Pérez-Cotapos J. Interactions between alkyl xanthates and cationic micelles. J Colloid Interface Sci. 1986;109(1):21–30.  https://doi.org/10.1016/0021-9797(86)90277-8.CrossRefGoogle Scholar
  32. 32.
    Enache M, Volanschi E. Spectral studies on the molecular interaction of anticancer drug mitoxantrone with CTAB micelles. J Pharm Sci. 2011;100(2):558–65.  https://doi.org/10.1002/jps.22289.CrossRefPubMedGoogle Scholar
  33. 33.
    Jindal N, Mehta SK. Nevirapine loaded Poloxamer 407/Pluronic P123 mixed micelles: optimization of formulation and in vitro evaluation. Colloids Surf B Biointerfaces. 2015;129:100–6.  https://doi.org/10.1016/j.colsurfb.2015.03.030.CrossRefPubMedGoogle Scholar
  34. 34.
    Lackowicz JR. Principles of fluorescence spectroscopy. 3rd ed. New York: Plenum Press; 1983.  https://doi.org/10.1007/978-1-4615-7658-7.CrossRefGoogle Scholar
  35. 35.
    Suksiriworapong J, Rungvimolsin T, Ag-omol A, Junyaprasert VB, Chantasart D. Development and characterization of lyophilized diazepam-loaded polymeric micelles. AAPS PharmSciTech. 2014;15(1):52–64.  https://doi.org/10.1208/s12249-013-0032-4.CrossRefPubMedGoogle Scholar
  36. 36.
    Balakrishnan A, Rege BD, Amidon GL, Polli JE. Surfactant-mediated dissolution: contributions of solubility enhancement and relatively low micelle diffusivity. J Pharm Sci. 2004;93(8):2064–75.  https://doi.org/10.1002/jps.20118.CrossRefPubMedGoogle Scholar
  37. 37.
    Markina A, Ivanov V, Komarov P, Khokhlov A, Tung SH. Self-assembly of micelles in organic solutions of lecithin and bile salt: mesoscale computer simulation. Chem Phys Lett. 2016;664:16–22.  https://doi.org/10.1016/j.cplett.2016.09.078.CrossRefGoogle Scholar
  38. 38.
    Kaya A, Yukselen Y. Zeta potential of soils with surfactants and its relevance to electrokinetic remediation. J Hazard Mater. 2005;120(1–3):119–26.  https://doi.org/10.1016/j.jhazmat.2004.12.023.CrossRefPubMedGoogle Scholar
  39. 39.
    Mallick A, Purkayastha P, Chattopadhyay N. Photoprocesses of excited molecules in confined liquid environments: an overview. J Photochem Photobiol C Photochem Rev. 2007;8(3):109–27.  https://doi.org/10.1016/j.jphotochemrev.2007.06.001.CrossRefGoogle Scholar
  40. 40.
    Nayak MK, Dogra SK. Solvatochromism and prototropism in methyl 6-aminonicotinate: failure to observe amine-imine phototautomerism in solvents. J Mol Struct. 2004;702(1–3):85–94.  https://doi.org/10.1016/j.molstruc.2004.06.014.CrossRefGoogle Scholar
  41. 41.
    Subuddhi U, Mishra AK. Micellization of bile salts in aqueous medium: a fluorescence study. Colloids Surf B Biointerfaces. 2007;57(1):102–7.  https://doi.org/10.1016/j.colsurfb.2007.01.009.CrossRefPubMedGoogle Scholar
  42. 42.
    Small DM, Penkett SA, Chapman D. Studies on simple and mixed bile salt micelles by nuclear magnetic resonance spectroscopy. Biochim Biophys Acta. 1969;176(1):178–89.  https://doi.org/10.1016/0005-2760(69)90086-1.CrossRefPubMedGoogle Scholar
  43. 43.
    Raupp G, Felippe AC, Frizon TEA, Silva L, Paula MMS, Dal-Bó AG. Determination of the stabilization time of the solution-air interface for aggregates formed by NaC in mixtures with SDS and PEO, investigated by dynamic surface tension measurements. Soft. 2014;3:1–10.CrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2017

Authors and Affiliations

  • Josefina Priotti
    • 1
  • Darío Leonardi
    • 1
    • 2
  • Guillermo Pico
    • 3
    • 4
  • María C. Lamas
    • 1
    • 2
  1. 1.IQUIR-CONICETRosarioArgentina
  2. 2.Departamento de Farmacia, Facultad de Ciencias Bioquímicas y FarmacéuticasUniversidad Nacional de RosarioRosarioArgentina
  3. 3.IPROBYQ- CONICETRosarioArgentina
  4. 4.Departamento de Química-Física, Facultad de Ciencias Bioquímicas y FarmacéuticasUniversidad Nacional de RosarioRosarioArgentina

Personalised recommendations