AAPS PharmSciTech

, Volume 19, Issue 3, pp 1133–1140 | Cite as

Promising Antibacterial Effects of Silver Nanoparticle-Loaded Tea Tree Oil Nanoemulsion: a Synergistic Combination Against Resistance Threat

  • Roqya Najafi-taher
  • Behnaz Ghaemi
  • Sharmin Kharazi
  • Samira Rasoulikoohi
  • Amir Amani
Research Article
  • 139 Downloads

Abstract

Highly resistant pathogens may be developed in patients with immune disorders after prolonged exposure to antibiotics, a growing threat worldwide. In order to overcome these problems, this study introduces a new class of engineered nanosystems comprising of tea tree oil nanoemulsion (TTO NE) loaded with Ag nanoparticles (NPs). Silver shows a strong toxicity towards a wide range of microorganisms. Also, TTO NE could be employed as a promising and safe antimicrobial agent for local therapies of bacterial infections. The nanosystem was prepared by low-energy method. Mean droplet size of the NE was found to be 17.7 nm. Results of the antibacterial assays showed promising ability of the designed nanosystem for eradication of Gram-positive and Gram-negative bacteria (95%). Also, it was shown that introducing colloidal Ag NPs to the TTO NE exerted a synergistic effect against Escherichia coli (FIC 0.48) while only an additive effect was observed against Staphylococcus aureus (FIC 0.75). The antibacterial effects of TTO NE+Ag NPs together with their compatibility with human cells can present them as a suitable candidate to fight against the antibacterial resistance threat.

KEY WORDS

tea tree oil nanoemulsion resistant bacteria silver nanoparticle synergism 

References

  1. 1.
    Martínez JL, Coque TM, Baquero F. Prioritizing risks of antibiotic resistance genes in all metagenomes. Nat Rev Microbiol. 2015;13(6):396.  https://doi.org/10.1038/nrmicro3399-c2.CrossRefPubMedGoogle Scholar
  2. 2.
    Ling LL, Schneider T, Peoples AJ, Spoering AL, Engels I, Conlon BP, et al. A new antibiotic kills pathogens without detectable resistance. Nature. 2015;517(7535):455–9.  https://doi.org/10.1038/nature14098.CrossRefPubMedGoogle Scholar
  3. 3.
    Piddock LJ. Assess drug-resistance phenotypes, not just genotypes. Nat Microbiol. 2016;1(8):16120.  https://doi.org/10.1038/nmicrobiol.2016.120.CrossRefPubMedGoogle Scholar
  4. 4.
    Durán N, Durán M, de Jesus MB, Seabra AB, Fávaro WJ, Nakazato G. Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity. Nanomedicine. 2016;12(3):789–99.  https://doi.org/10.1016/j.nano.2015.11.016.CrossRefPubMedGoogle Scholar
  5. 5.
    AshaRani P, Low Kah Mun G, Hande MP, Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano. 2008;3(2):279–90.CrossRefGoogle Scholar
  6. 6.
    Lim YH, Tiemann KM, Heo GS, Wagers PO, Rezenom YH, Zhang S, et al. Preparation and in vitro antimicrobial activity of silver-bearing degradable polymeric nanoparticles of polyphosphoester-block-poly (L-lactide). ACS Nano. 2015;9(2):1995–2008.  https://doi.org/10.1021/nn507046h.CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Gitipour A, Thiel SW, Scheckel KG, Tolaymat T. Anaerobic toxicity of cationic silver nanoparticles. Sci Total Environ. 2016;557:363–8.  https://doi.org/10.1016/j.scitotenv.2016.02.190.CrossRefPubMedGoogle Scholar
  8. 8.
    Abu-Youssef MA, Soliman SM, Langer V, Gohar YM, Hasanen AA, Makhyoun MA, et al. Synthesis, crystal structure, quantum chemical calculations, DNA interactions, and antimicrobial activity of [Ag (2-amino-3-methylpyridine) 2] NO3 and [Ag (pyridine-2-carboxaldoxime) NO3]. Inorg Chem. 2010;49(21):9788–97.  https://doi.org/10.1021/ic100581k.CrossRefPubMedGoogle Scholar
  9. 9.
    Ramstedt M, Cheng N, Azzaroni O, Mossialos D, Mathieu HJ, Huck WT. Synthesis and characterization of poly (3-sulfopropylmethacrylate) brushes for potential antibacterial applications. Langmuir. 2007;23(6):3314–21.  https://doi.org/10.1021/la062670+.CrossRefPubMedGoogle Scholar
  10. 10.
    Kumar A, Vemula PK, Ajayan PM, John G. Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil. Nat Mater. 2008;7(3):236–41.  https://doi.org/10.1038/nmat2099.CrossRefPubMedGoogle Scholar
  11. 11.
    Lins RF, Lustri WR, Minharro S, Alonso A, de Sousa Neto D. On the formation, physicochemical properties and antibacterial activity of colloidal systems containing tea tree (Melaleuca alternifolia) oil. Colloids Surf A Physicochem Eng Asp. 2016;497:271–9.  https://doi.org/10.1016/j.colsurfa.2016.02.024.CrossRefGoogle Scholar
  12. 12.
    Yap PSX, Krishnan T, Chan K-G, Lim S. Antibacterial mode of action of Cinnamomum verum bark essential oil, alone and in combination with piperacillin, against a multi-drug-resistant Escherichia coli strain. J Microbiol Biotechnol. 2015;25(8):1299–306.  https://doi.org/10.4014/jmb.1407.07054.CrossRefPubMedGoogle Scholar
  13. 13.
    Flores F, De Lima J, Ribeiro RF, Alves S, Rolim C, Beck RCR, et al. Antifungal activity of nanocapsule suspensions containing tea tree oil on the growth of Trichophyton rubrum. Mycopathologia. 2013;175(3–4):281–6.  https://doi.org/10.1007/s11046-013-9622-7.CrossRefPubMedGoogle Scholar
  14. 14.
    Prabhu S, Poulose EK. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett. 2012;2(1):1–10.CrossRefGoogle Scholar
  15. 15.
    Carson CF, Mee BJ, Riley TV. Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-kill, lysis, leakage, and salt tolerance assays and electron microscopy. Antimicrob Agents Chemother. 2002;46(6):1914–20.  https://doi.org/10.1128/AAC.46.6.1914-1920.2002.CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Low W, Martin C, Hill D, Kenward M. Antimicrobial efficacy of silver ions in combination with tea tree oil against Pseudomonas aeruginosa, Staphylococcus aureus and Candida albicans. Int J Antimicrob Agents. 2011;37(2):162–5.  https://doi.org/10.1016/j.ijantimicag.2010.10.015.CrossRefPubMedGoogle Scholar
  17. 17.
    Low W, Martin C, Hill D, Kenward M. Antimicrobial efficacy of liposome-encapsulated silver ions and tea tree oil against Pseudomonas aeruginosa, Staphylococcus aureus and Candida albicans. Lett Appl Microbiol. 2013;57(1):33–9.  https://doi.org/10.1111/lam.12082.CrossRefPubMedGoogle Scholar
  18. 18.
    Andrews JM. Determination of minimum inhibitory concentrations. J Antimicrob Chemother. 2001;48(suppl 1):5–16.  https://doi.org/10.1093/jac/48.suppl_1.5.CrossRefPubMedGoogle Scholar
  19. 19.
    Tavakol S, Hoveizi E, Kharrazi S, Tavakol B, Karimi S, Rezayat Sorkhabadi SM. Organelles and chromatin fragmentation of human umbilical vein endothelial cell influence by the effects of zeta potential and size of silver nanoparticles in different manners. Artif Cells Nanomed Biotechnol. 2017;45(4):817–23.  https://doi.org/10.1080/21691401.2016.1178132.CrossRefPubMedGoogle Scholar
  20. 20.
    The National Committee for Clinical Laboratory Standards (NCCLS) M7-A4. 1997.Google Scholar
  21. 21.
    Yap PSX, Lim SHE, Hu CP, Yiap BC. Combination of essential oils and antibiotics reduce antibiotic resistance in plasmid-conferred multidrug resistant bacteria. Phytomedicine. 2013;20(8):710–3.  https://doi.org/10.1016/j.phymed.2013.02.013.CrossRefPubMedGoogle Scholar
  22. 22.
    Samadi N, Hosseini S, Fazeli A, Fazeli M. Synthesis and antimicrobial effects of silver nanoparticles produced by chemical reduction method. DARU J Pharm Sci. 2010;18(3):168.Google Scholar
  23. 23.
    Kim JS, Kuk E, Yu KN, Kim J-H, Park SJ, Lee HJ, et al. Antimicrobial effects of silver nanoparticles. Nanomedicine. 2007;3(1):95–101.  https://doi.org/10.1016/j.nano.2006.12.001.CrossRefPubMedGoogle Scholar
  24. 24.
    Badawy AME, Luxton TP, Silva RG, Scheckel KG, Suidan MT, Tolaymat TM. Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions. Environ Sci Technol. 2010;44(4):1260–6.  https://doi.org/10.1021/es902240k.CrossRefPubMedGoogle Scholar
  25. 25.
    Sotomayor-Gerding D, Oomah BD, Acevedo F, Morales E, Bustamante M, Shene C, et al. High carotenoid bioaccessibility through linseed oil nanoemulsions with enhanced physical and oxidative stability. Food Chem. 2016;199:463–70.  https://doi.org/10.1016/j.foodchem.2015.12.004.CrossRefPubMedGoogle Scholar
  26. 26.
    Hussain S, Hess K, Gearhart J, Geiss K, Schlager J. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol in Vitro. 2005;19(7):975–83.  https://doi.org/10.1016/j.tiv.2005.06.034.CrossRefPubMedGoogle Scholar
  27. 27.
    Li M, Zhu L, Liu B, Du L, Jia X, Han L, et al. Tea tree oil nanoemulsions for inhalation therapies of bacterial and fungal pneumonia. Colloids Surf B: Biointerfaces. 2016;141:408–16.  https://doi.org/10.1016/j.colsurfb.2016.02.017.CrossRefPubMedGoogle Scholar
  28. 28.
    Malhi HK, Tu J, Riley TV, Kumarasinghe SP, Hammer KA. Tea tree oil gel for mild to moderate acne; a 12 week uncontrolled, open-label phase II pilot study. Australas J Dermatol. 2017;58(3):205–10.  https://doi.org/10.1111/ajd.12465.
  29. 29.
    van der Zande M, Vandebriel RJ, Van Doren E, Kramer E, Herrera Rivera Z, Serrano-Rojero CS, et al. Distribution, elimination, and toxicity of silver nanoparticles and silver ions in rats after 28-day oral exposure. ACS Nano. 2012;6(8):7427–42.  https://doi.org/10.1021/nn302649p.CrossRefPubMedGoogle Scholar
  30. 30.
    Verano-Braga T, Miethling-Graff R, Wojdyla K, Rogowska-Wrzesinska A, Brewer JR, Erdmann H, et al. Insights into the cellular response triggered by silver nanoparticles using quantitative proteomics. ACS Nano. 2014;8(3):2161–75.  https://doi.org/10.1021/nn4050744.CrossRefPubMedGoogle Scholar
  31. 31.
    Lawrence MJ, Rees GD. Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev. 2000;45(1):89–121.  https://doi.org/10.1016/S0169-409X(00)00103-4.CrossRefPubMedGoogle Scholar
  32. 32.
    Warriner R, Burrell R. Infection and the chronic wound: a focus on silver. Adv Skin Wound Care. 2005;18(8):2–12.  https://doi.org/10.1097/00129334-200510001-00001.CrossRefPubMedGoogle Scholar
  33. 33.
    Feng Q, Wu J, Chen G, Cui F, Kim T, Kim JA. Mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res. 2000;52(4):662–8.  https://doi.org/10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3.CrossRefPubMedGoogle Scholar
  34. 34.
    Pal S, Tak YK, Song JM. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol. 2007;73(6):1712–20.  https://doi.org/10.1128/AEM.02218-06.CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Bakkali F, Averbeck S, Averbeck D, Idaomar M. Biological effects of essential oils—a review. Food Chem Toxicol. 2008;46(2):446–75.  https://doi.org/10.1016/j.fct.2007.09.106.CrossRefPubMedGoogle Scholar
  36. 36.
    Anjali C, Dash M, Chandrasekaran N, Mukherjee A. Antibacterial activity of sunflower oil microemulsion. Int J Pharm Pharm Sci. 2010;2:123–8.Google Scholar
  37. 37.
    Saranya S, Chandrasekaran N, Mukherjee A. Antibacterial activity of eucalyptus oil nanoemulsion against Proteus mirabilis. Int J Pharm Pharm Sci. 2012;4(3):668–71.Google Scholar
  38. 38.
    Chin KB, Cordell B. The effect of tea tree oil (Melaleuca alternifolia) on wound healing using a dressing model. J Altern Complement Med. 2013;19(12):942–5.  https://doi.org/10.1089/acm.2012.0787.CrossRefPubMedGoogle Scholar
  39. 39.
    Kothiwale SV, Patwardhan V, Gandhi M, Sohoni R, Kumar AA. Comparative study of antiplaque and antigingivitis effects of herbal mouthrinse containing tea tree oil, clove, and basil with commercially available essential oil mouthrinse. J Indian Soc Periodontol. 2014;18(3):316–20.  https://doi.org/10.4103/0972-124X.134568.CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    Shao X, Cheng S, Wang H, Yu D, Mungai C. The possible mechanism of antifungal action of tea tree oil on Botrytis cinerea. J Appl Microbiol. 2013;114(6):1642–9.  https://doi.org/10.1111/jam.12193.CrossRefPubMedGoogle Scholar
  41. 41.
    Gilling D, Kitajima M, Torrey J, Bright KR. Antiviral efficacy and mechanisms of action of oregano essential oil and its primary component carvacrol against murine norovirus. J Appl Microbiol. 2014;116(5):1149–63.  https://doi.org/10.1111/jam.12453.CrossRefPubMedGoogle Scholar
  42. 42.
    Carson C, Hammer K, Riley T. Melaleuca alternifolia (tea tree) oil: a review of antimicrobial and other medicinal properties. Clin Microbiol Rev. 2006;19(1):50–62.  https://doi.org/10.1128/CMR.19.1.50-62.2006.CrossRefPubMedCentralPubMedGoogle Scholar
  43. 43.
    Cox S, Mann C, Markham J, Bell H, Gustafson J, Warmington J, et al. The mode of antimicrobial action of the essential oil of Melaleuca alternifolia (tea tree oil). J Appl Microbiol. 2000;88(1):170–5.CrossRefPubMedGoogle Scholar
  44. 44.
    Liang R, Xu S, Shoemaker CF, Li Y, Zhong F, Huang Q. Physical and antimicrobial properties of peppermint oil nanoemulsions. J Agric Food Chem. 2012;60(30):7548–55.  https://doi.org/10.1021/jf301129k.CrossRefPubMedGoogle Scholar
  45. 45.
    Severino R, Ferrari G, Vu KD, Donsì F, Salmieri S, Lacroix M. Antimicrobial effects of modified chitosan based coating containing nanoemulsion of essential oils, modified atmosphere packaging and gamma irradiation against Escherichia coli O157: H7 and Salmonella typhimurium on green beans. Food Control. 2015;50:215–22.  https://doi.org/10.1016/j.foodcont.2014.08.029.CrossRefGoogle Scholar
  46. 46.
    Low WL, Kenward K, Britland ST, Amin MC, Martin C. Essential oils and metal ions as alternative antimicrobial agents: a focus on tea tree oil and silver. Int Wound J. 2016;14(2):369–84.  https://doi.org/10.1111/iwj.12611.CrossRefPubMedGoogle Scholar
  47. 47.
    Le Ouay B, Stellacci F. Antibacterial activity of silver nanoparticles: a surface science insight. Nano Today. 2015;10(3):339–54.  https://doi.org/10.1016/j.nantod.2015.04.002.CrossRefGoogle Scholar
  48. 48.
    Yu BP. Cellular defenses against damage from reactive oxygen species. Physiol Rev. 1994;74(1):139–63.CrossRefPubMedGoogle Scholar
  49. 49.
    Guzman M, Dille J, Godet S. Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria. Nanomedicine. 2012;8(1):37–45.  https://doi.org/10.1016/j.nano.2011.05.007.CrossRefPubMedGoogle Scholar
  50. 50.
    Madigan MT, Martinko JM, Dunlap PV, Clark DP. Brock biology of microorganisms12th edn. Int Microbiol. 2008;11:65–73.Google Scholar
  51. 51.
    Amro NA, Kotra LP, Wadu-Mesthrige K, Bulychev A, Mobashery S, Liu G-y. High-resolution atomic force microscopy studies of the Escherichia coli outer membrane: structural basis for permeability. Langmuir. 2000;16(6):2789–96.  https://doi.org/10.1021/la991013x.CrossRefGoogle Scholar
  52. 52.
    Brown S, Santa Maria JP Jr, Walker S. Wall teichoic acids of gram-positive bacteria. Annu Rev Microbiol. 2013;67(1):313–36.  https://doi.org/10.1146/annurev-micro-092412-155620.CrossRefPubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2017

Authors and Affiliations

  • Roqya Najafi-taher
    • 1
  • Behnaz Ghaemi
    • 1
  • Sharmin Kharazi
    • 1
  • Samira Rasoulikoohi
    • 1
    • 2
  • Amir Amani
    • 1
    • 3
  1. 1.Department of Medical Nanotechnology, School of Advanced Technologies in MedicineTehran University of Medical SciencesTehranIran
  2. 2.Antimicrobial Resistance Research Center, Rasoul-e-Akram HospitalIran University of Medical SciencesTehranIran
  3. 3.Medical Biomaterials Research Center (MBRC)Tehran University of Medical SciencesTehranIran

Personalised recommendations