AAPS PharmSciTech

, Volume 19, Issue 1, pp 303–314 | Cite as

Development of a Novel Polymeric Nanocomposite Complex for Drugs with Low Bioavailability

  • Mduduzi N. Sithole
  • Yahya E. Choonara
  • Lisa C. du Toit
  • Pradeep Kumar
  • Thashree Marimuthu
  • Pierre P. D. Kondiah
  • Viness Pillay
Research Article


Semi-synthetic biopolymer complex (SSBC) nanoparticles were investigated as a potential oral drug delivery system to enhance the bioavailability of a poorly water-soluble model drug acyclovir (ACV). The SSBCs were prepared from cross-linking of hydroxyl groups on hyaluronic acid (HA) with poly(acrylic acid) (PAA) resulting in ether linkages. Thereafter, conjugation of 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) onto HA-PAA was accomplished using a 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)/N-hydroxysuccinimide (NHS)-promoted coupling reaction. Nanoparticle powders were prepared by spray drying of drug-loaded SSBC emulsions in a laboratory nano spray dryer. The prepared SSBC was characterized by Fourier transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC), 1H nuclear magnetic resonance (NMR) imaging, and X-ray diffraction (XRD) spectroscopy. The average particle size was found to be 257.92 nm. An entrapment efficiency of 85% was achieved as ACV has enhanced affinity for the hydrophobic inner core of the complex. It was shown that SSBC improved the solubility of ACV by 30% and the ex vivo permeation by 10% compared to the conventional ACV formulation, consequentially enhancing its bioavailability. Overall, this study resulted in the successful preparation of a hybrid chemically conjugated SSBC which has great potential for enhanced oral absorption of ACV with possible tuneable ACV permeability and solubility, producing an “intelligent” nanoenabled drug delivery system.


acyclovir nanoenabled drug delivery systems oral bioavailability semi-synthetic biopolymer complex spray drying 



The Wits Advanced Drug Delivery Platform Research Unit acknowledges funding from the National Research Foundation of South Africa.

Compliance with Ethical Standards

Ethics approval was obtained from the Animal Ethics Screening Committee of the University of the Witwatersrand for the use of the epithelial tissue.


  1. 1.
    Joshi AJ, Patel RP. Role of biodegradable polymer in drug delivery. Int J Curr Pharm Res. 2012;4:74–81.Google Scholar
  2. 2.
    Sionkowska A. Current research on the blends of natural and synthetic polymers as new biomaterials: review. Prog Polym Sci. 2011;36(9):1254–76.CrossRefGoogle Scholar
  3. 3.
    van Hest JCM. Biosynthetic-synthetic polymer conjugates. J Macromol Sci C Polym Rev. 2007;47:63–92.Google Scholar
  4. 4.
    Nakagawa M, Tanaka M, Miyata T. Evaluation of collagen gel and hyaluronic acid as vitreous substitutes. Ophthalmic Res. 1997;29:409–20.CrossRefPubMedGoogle Scholar
  5. 5.
    Hu Y, Jiang X, Ding Y, Ge H, Yuan Y, Yang C. Synthesis and characterization of chitosan-poly(acrylic acid) nanoparticles. Biomaterials. 2002;23:3193–201.CrossRefPubMedGoogle Scholar
  6. 6.
    Chouhan P, Saini TR. Hydroxypropyl-훽-cyclodextrin: a novel transungual permeation enhancer for development of topical drug delivery system for onychomycosis. J Drug Deliv. 2014;2014:1–7.CrossRefGoogle Scholar
  7. 7.
    Arnal J, Gonzalez-alvarez I, Bermejo M, Amidon GL, Junginger HE, Kopp S, Midha KK, Shah VP, Stavchansky S, Dressman JB, Barends DM. Biowaiver monographs for immediate release solid oral dosage form: aciclovir. J Pharm Sci. 2008;97:5061–73.CrossRefPubMedGoogle Scholar
  8. 8.
    Nayak S, Marulkar K, Bhaskar V, Chivate A. Preparation and evaluation of hot melt extrudes of acyclovir. WJPPS. 2014;3:1073–83.Google Scholar
  9. 9.
    Susantakumar P, Gaur A, Sharma P. Comparative pharmacokinetics, safety and tolerability evaluation of acyclovir IR 800 mg tablet in healthy Indian adult volunteers under fasting and non-fasting conditions. J Bioequiv Availab. 2011;3:128–38.CrossRefGoogle Scholar
  10. 10.
    Bangaru RA, Bansal YK, Rao AR, Gandhi TP. Rapid, simple and sensitive high-performance liquid chromatographic method for detection and determination of acyclovir in human plasma and its use in bioavailability studies. J Chromatogr B Biomed Sci Appl. 2000;739:231–7.CrossRefPubMedGoogle Scholar
  11. 11.
    Pandey MK, Tyagi R, Yang KM, Fisher JR, Colton CK, Kumar J, Parmar SV, Aiazian E, Watterson AC. Design and synthesis of perfluorinated amphiphilic copolymers: smart nanomicelles for theranostic applications. Polymer. 2011;52:4727–35.CrossRefGoogle Scholar
  12. 12.
    Trimaille T, Mondon K, Gurny R. M¨oller M. Novel polymeric micelles for hydrophobic drug delivery based onbiodegradable poly(hexyl-substituted lactides). Int J Pharm Rev. 2006;319:147–54.CrossRefGoogle Scholar
  13. 13.
    Schanté CE, Zuber G, Herlinb C, Vandamme TF. Chemical modifications of hyaluronic acid for the synthesis of derivatives for a broad range of biomedical applications. Carbohydr Polym. 2011;85:469–89.CrossRefGoogle Scholar
  14. 14.
    Kogan G, Soltés L, Stern R, Gemeiner P. Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications. Biotechnol Lett. 2007;29:17–25.CrossRefPubMedGoogle Scholar
  15. 15.
    Laurent TC. The chemistry, biology and medical applications of hyaluronan and its derivatives. London: Portland Press; 1998.Google Scholar
  16. 16.
    Laurent TC, Fraser JR. Hyaluronan. FASEB J. 1992;6:2397–404.PubMedGoogle Scholar
  17. 17.
    Leach JB, Bivens KA, Patrick CW Jr, Schmidt CE. Photocrosslinked hyaluronic acid hydrogels: natural, biodegradable tissue engineering scaffolds. Biotechnol Bioeng. 2003;82:578–89.CrossRefGoogle Scholar
  18. 18.
    Ferguson EL, Alshame AM, Thomas DW. Evaluation of hyaluronic acid-protein conjugates for polymer masked-unmasked protein therapy. Int J Pharm. 2010;402:95–102.CrossRefPubMedGoogle Scholar
  19. 19.
    Li F, Bae BC, Na K. Acetylated hyaluronic acid/photosensitizer conjugate for the preparation of nanogels with controllable phototoxicity: synthesis, characterization, autophotoquenching properties, and in vitro phototoxicity against HeLa cells. Bioconjug Chem. 2010;21:1312–20.CrossRefPubMedGoogle Scholar
  20. 20.
    Prestwich GD, Marecak DM, Marecek JF, Vercruysse KP, Ziebell MR. Controlled chemical modification of hyaluronic acid: synthesis, applications, and biodegradation of hydrazide derivatives. J Control Release. 1998;53:93–103.CrossRefPubMedGoogle Scholar
  21. 21.
    Qiu Y, Park K. Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev. 2001;53:321–39.CrossRefPubMedGoogle Scholar
  22. 22.
    Cascone MG, Sim B, Downes S. Blends of synthetic and natural polymers as drug delivery systems for growth hormone. Biomaterials. 1995;16:569–74.CrossRefPubMedGoogle Scholar
  23. 23.
    Zhang Y, Meng F, Cui Y, Song Y. Enhancing effect of hydroxypropyl-β-cyclodextrin on the intestinal absorption process of genipin. J Agric Food Chem. 2011;59:10919–26.CrossRefPubMedGoogle Scholar
  24. 24.
    Hans ML, Lowman AM. Biodegradable nanoparticles for drug delivery and targeting. Curr Opin Solid State Mater Sci. 2002;6:319–27.CrossRefGoogle Scholar
  25. 25.
    Lehner R, Wang X, Marsch S. Intelligent nanomaterials for medicine: carrier platforms and targeting strategies in the context of clinical application. Nanomed Nanotechnol Biol Med. 2013;9:742–57.CrossRefGoogle Scholar
  26. 26.
    Mahouche-Cherguia S, Guerrouache M, Carbonnier B, Chehimi MM. Polymer-immobilized nanoparticles. Colloids Surf A Physicochem Eng Asp. 2013;439:43–68.CrossRefGoogle Scholar
  27. 27.
    Rao JP, Geckeler KE. Polymer nanoparticles: preparation techniques and size-control parameters. Prog Polym Sci. 2011;36:887–913.CrossRefGoogle Scholar
  28. 28.
    Han HS, Lee J, Kim HR, Chae SY, Kim M, Saravanakumar G, et al. Robust PEGylated hyaluronic acid nanoparticles as the carrier of doxorubicin: mineralization and its effect on tumor targetability in vivo. J Control Release. 2013;168:105–14.CrossRefPubMedGoogle Scholar
  29. 29.
    Schafroth N, Arpagaus C, Jadhav UY, Makne S, Douroumis D. Nano and microparticle engineering of water insoluble drugs using a novel spray-drying process. Colloids Surf B Biointerfaces. 2012;90:8–15.CrossRefPubMedGoogle Scholar
  30. 30.
    Kumar B, Jain SK, Prajapati SK, Mahor A, Kumar A. Development and characterization of transdermal microemulsion gel for an antiviral drug. Int J Pharm Sci Res. 2010;1:57–74.Google Scholar
  31. 31.
    Boonen J, Baert B, Roche N, Burvenich C, De Spiegeleer B. Transdermal behaviour of the N-alkylamide spilanthol (affinin) from Spilanthes acmella (Compositae) extracts. J Ethnopharmacol. 2010;127(1):77–84.CrossRefPubMedGoogle Scholar
  32. 32.
    Fulda S, Gorman MA, Hori O, Samali A. Cellular stress responses: cell survival and cell death. Int J Cell Biol. 2010;2009:1–23.Google Scholar
  33. 33.
    Stuart B. Infrared spectroscopy: fundamental and applications. West Sussex: Wiley; 2004.CrossRefGoogle Scholar
  34. 34.
    Nair AB, Attimarad M, Al-Dhubiab BE, Wadhwa J, Harsha S, Ahmed M. Enhanced oral bioavailability of acyclovir by inclusion complex using hydroxypropyl-β-cyclodextrin. Drug Deliv. 2014;21:540–7.CrossRefPubMedGoogle Scholar
  35. 35.
    Hörter D, Dressman JB. Influence of physicochemical properties on dissolution of drugs in the gastrointestinal tract. Adv Drug Deliv Rev. 2001;46:75–87.CrossRefPubMedGoogle Scholar
  36. 36.
    Corti G, Maestrelli F, Cirri M, Furlanetto S, Mura P. Development and evaluation of an in vitro method for prediction of human drug absorption I. Assessment of artificial membrane composition. Eur J Pharm Sci. 2006;27:346–53.CrossRefPubMedGoogle Scholar
  37. 37.
    Fernandes C, Junqueira RG, Campos L, Pianetti GA. Dissolution test for lamivudine tablets: optimization and statistical analysis. J Pharm Biomed Anal. 2006;42:601–6.CrossRefPubMedGoogle Scholar
  38. 38.
    Ferraz HG, Carpentieri LN, Watanabe SP. Dissolution profile evaluation of solid pharmaceutical forms containing chloramphenicol marketed in Brazil. Braz Arch Biol Technol. 2007;50:57–65.CrossRefGoogle Scholar
  39. 39.
    Polli JE, Rekhi GS, Augsburger LL, Shah VP. Methods to compare dissolution profiles and a rationale for wide dissolution specifications for metoprolol tartarate tablets. J Pharm Sci. 1997;86:690–700.CrossRefPubMedGoogle Scholar
  40. 40.
    Anderson NH, Bauer M, Boussac N, Khan-Malek R, Munden P, et al. An evaluation of fit factors and dissolution efficiency for the comparison of in vitro dissolution profiles. J Pharm Biomed Anal. 1999;17:811–22.CrossRefGoogle Scholar
  41. 41.
    Sankar R, Jain S. Approaches for enhancing the bioavailability of acyclovir: a critical review. Int J Pharm Biosci. 2013;4(4):623–34.Google Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2017

Authors and Affiliations

  • Mduduzi N. Sithole
    • 1
  • Yahya E. Choonara
    • 1
  • Lisa C. du Toit
    • 1
  • Pradeep Kumar
    • 1
  • Thashree Marimuthu
    • 1
  • Pierre P. D. Kondiah
    • 1
  • Viness Pillay
    • 1
  1. 1.Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa

Personalised recommendations