Skip to main content

Advertisement

Log in

Preservation of Anticancer and Immunosuppressive Properties of Rapamycin Achieved Through Controlled Releasing Particles

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Rapamycin is commonly used in chemotherapy and posttransplantation rejection suppression, where sustained release is preferred. Conventionally, rapamycin has to be administered in excess due to its poor solubility, and this often leads to cytotoxicity and undesirable side effects. In addition, rapamycin has been shown to be hydrolytically unstable, losing its bioactivity within a few hours. The use of drug delivery systems is hypothesized to preserve the bioactivity of rapamycin, while providing controlled release of this otherwise potent drug. This paper reports on the use of microparticles (MP) as a means to tune and sustain the delivery of bioactive rapamycin for up to 30 days. Rapamycin was encapsulated (100% efficiency) in poly(lactic-co-glycolic acid) (PLGA), polycaprolactone (PCL), or a mixture of both via an emulsion method. The use of different polymer types and mixture was shown to achieve a variety of release kinetics and profile. Released rapamycin was subsequently evaluated against breast cancer cell (MCF-7) and human lymphocyte cell (Jurkat). Inhibition of cell proliferation was in good agreement with in vitro release profiles, which confirmed the intact bioactivity of rapamycin. For Jurkat cells, the suppression of cell growth was proven to be effective up to 20 days, a duration significantly longer than free rapamycin. Taken together, these results demonstrate the ability to tune, sustain, and preserve the bioactivity of rapamycin using MP formulations. The sustained delivery of rapamycin could lead to better therapeutic effects than bolus dosage, at the same time improving patient compliance due to its long-acting duration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Murphy SL, Xu J, Kochanek KD. Deaths: final data for 2013. In: National vital. Statistics reports. Volume 61 NM, 2013. Deaths: final data for 2010, editor. Centers for Disease Control and Prevention; 2013.

  2. Jhunjhunwala S, Balmert SC, Raimondi G, Dons E, Nichols EE, Thomson AW, et al. Controlled release formulations of IL-2, TGF-beta1 and rapamycin for the induction of regulatory T cells. J Control Release. 2012;159(1):78–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Brown DM. Drug delivery systems in cancer therapy. Totowa: Humana; 2004.

    Google Scholar 

  4. Baker JR, Jr. Dendrimer-based nanoparticles for cancer therapy. Hematol/Educ Prog Am Soc Hematol Am Soc Hematol Educ Prog. 2009:708–19.

  5. Abouelfadel Z, Crawford ED. Leuprorelin depot injection: patient considerations in the management of prostatic cancer. Ther Clin Risk Manag. 2008;4(2):513–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Wicki A, Witzigmann D, Balasubramanian V, Huwyler J. Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J Control Release. 2015;200:138–57.

    Article  CAS  PubMed  Google Scholar 

  7. Lee WL, Loo SCJ. Revolutionizing drug delivery through biodegradable multilayered particles. J Drug Target. 2012;20(8):633–47.

    Article  CAS  PubMed  Google Scholar 

  8. Lee WL, Widjaja E, Loo SCJ. One-step fabrication of triple-layered polymeric microparticles with layer localization of drugs as a novel drug-delivery system. Small. 2010;6(9):1003–11.

    Article  CAS  PubMed  Google Scholar 

  9. Lee WL, Seh YC, Widjaja E, Chong HC, Tan NS, Loo SC. Fabrication and drug release study of double-layered microparticles of various sizes. J Pharm Sci. 2012;101(8):2787–97.

    Article  CAS  PubMed  Google Scholar 

  10. Singh MN, Hemant KSY, Ram M, Shivakumar HG. Microencapsulation: a promising technique for controlled drug delivery. Res Pharm Sci. 2010;5(2):65–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Lee WL, Loei C, Widjaja E, Loo SCJ. Altering the drug release profiles of double-layered ternary-phase microparticles. J Control Release. 2011;151(3):229–38.

    Article  CAS  PubMed  Google Scholar 

  12. Lim MPA, Lee WL, Widjaja E, Loo SCJ. One-step fabrication of core-shell structured alginate-PLGA/PLLA microparticles as a novel drug delivery system for water soluble drugs. Biomater Sci. 2013;1(5):486–93.

    Article  CAS  Google Scholar 

  13. Li J, Kim SG, Blenis J. Rapamycin: one drug, many effects. Cell Metab. 2014;19(3):373–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Law BK. Rapamycin: an anti-cancer immunosuppressant? Crit Rev Oncol/Hematol. 2005;56(1):47–60.

    Article  Google Scholar 

  15. Saunders RN, Metcalfe MS, Nicholson ML. Rapamycin in transplantation: a review of the evidence. Kidney Int. 2001;59(1):3–16.

    Article  CAS  PubMed  Google Scholar 

  16. Malaguti P, Vari S, Cognetti F, Fabi A. The mammalian target of rapamycin inhibitors in breast cancer: current evidence and future directions. Anticancer Res. 2013;33(1):21–8.

    CAS  PubMed  Google Scholar 

  17. Seto B. Rapamycin and mTOR: a serendipitous discovery and implications for breast cancer. Clin Transl Med. 2012;1(1):29.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Luan FL, Ding R, Sharma VK, Chon WJ, Lagman M, Suthanthiran M. Rapamycin is an effective inhibitor of human renal cancer metastasis. Kidney Int. 2003;63(3):917–26.

    Article  CAS  PubMed  Google Scholar 

  19. Cifarelli V, Lashinger LM, Devlin KL, Dunlap SM, Huang J, Kaaks R, et al. Metformin and rapamycin reduce pancreatic cancer growth in obese prediabetic mice by distinct microRNA-regulated mechanisms. Diabetes. 2015;64(5):1632–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Battelli C, Cho DC. mTOR inhibitors in renal cell carcinoma. Therapy. 2011;8(4):359–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dai ZJ, Gao J, Ma XB, Kang HF, Wang BF, Lu WF, et al. Antitumor effects of rapamycin in pancreatic cancer cells by inducing apoptosis and autophagy. Int J Mol Sci. 2012;14(1):273–85.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Simamora P, Alvarez JM, Yalkowsky SH. Solubilization of rapamycin. Int J Pharm. 2001;213(1–2):25–9.

    Article  CAS  PubMed  Google Scholar 

  23. Abraham RT, Gibbons JJ, Graziani EI. Chapter 17—chemistry and pharmacology of rapamycin and its derivatives. In: Michael NH, Fuyuhiko T, editors. The enzymes, vol. 27. San Diego: Academic; 2010. p. 329–66.

    Google Scholar 

  24. CV PP. Rapamune® (sirolimus) Oral solution and tablets 1999. Available from: http://www.accessdata.fda.gov/drugsatfda_docs/label/2015/021083s058,021110s075lbl.pdf.

  25. Limited P. Rapamune summary of product characteristics https://www.medicines.org.uk/emc/medicine/5747: eMC; 27 Oct 2015 [updated 27 Oct 2015; cited 2016 19 Feb].

  26. Ferron GM, Jusko WJ. Species differences in sirolimus stability in humans, rabbits, and rats. Drug Metab Dispos. 1998;26:83–4.

    CAS  PubMed  Google Scholar 

  27. Streit F, Christians U, Schiebel HM, Napoli KL, Ernst L, Linck A, et al. Sensitive and specific quantification of sirolimus (rapamycin) and its metabolites in blood of kidney graft recipients by HPLC/electrospray-mass spectrometry. Clin Chem. 1996;42(9):1417–25.

    CAS  PubMed  Google Scholar 

  28. Oyler AR, Segmuller BE, Sun Y, Polshyna A, Dunphy R, Armstrong BL, et al. Forced degradation studies of rapamycin: identification of autoxidation products. J Pharm Biomed Anal. 2012;59:194–200.

    Article  CAS  PubMed  Google Scholar 

  29. Thomson AW, Turnquist HR, Raimondi G. Immunoregulatory functions of mTOR inhibition. Nat Rev Immunol. 2009;9(5):324–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Holt DA, Konialian AL, Brandt M, Levy MA, Bossard MJ, Luengo JI, et al. Structure-activity studies of nonmacrocyclic rapamycin derivatives. Bioorg Med Chem Lett. 1993;3(10):1977–80.

    Article  CAS  Google Scholar 

  31. Varde NK, Pack DW. Microspheres for controlled release drug delivery. Expert Opin Biol Ther. 2004;4(1):35–51.

    Article  CAS  PubMed  Google Scholar 

  32. Fahr A, Liu X. Drug delivery strategies for poorly water-soluble drugs. Expert Opin Drug Deliv. 2007;4(4):403–16.

    Article  CAS  PubMed  Google Scholar 

  33. Tyler B, Wadsworth S, Recinos V, Mehta V, Vellimana A, Li K, et al. Local delivery of rapamycin: a toxicity and efficacy study in an experimental malignant glioma model in rats. Neuro-Oncology. 2011;13(7):700–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nanjwade KB, Patel JD, Parikh AK, Nanjwade KV, Manvi FV. Development and characterization of solid-lipid microparticles of highly insoluble drug sirolimus. J Bioequivalence Bioavailab. 2011;03(01).

  35. Shah M, Edman MC, Janga SR, Shi P, Dhandhukia J, Liu SY, et al. A rapamycin-binding protein polymer nanoparticle shows potent therapeutic activity in suppressing autoimmune dacryoadenitis in a mouse model of Sjogren’s syndrome. J Control Release. 2013;171(3):269–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kauffman KJ, Kanthamneni N, Meenach SA, Pierson BC, Bachelder EM, Ainslie KM. Optimization of rapamycin-loaded acetalated dextran microparticles for immunosuppression. Int J Pharm. 2012;422(1–2):356–63.

    Article  CAS  PubMed  Google Scholar 

  37. Jhunjhunwala S, Raimondi G, Thomson AW, Little SR. Delivery of rapamycin to dendritic cells using degradable microparticles. J Control Release. 2009;133(3):191–7.

    Article  CAS  PubMed  Google Scholar 

  38. Leong DT, Ng KW. Probing the relevance of 3D cancer models in nanomedicine research. Adv Drug Deliv Rev. 2014;79–80:95–106.

    Article  PubMed  Google Scholar 

  39. Pillai O, Panchagnula R. Polymers in drug delivery. Curr Opin Chem Biol. 2001;5(4):447–51.

    Article  CAS  PubMed  Google Scholar 

  40. Dinarvand R, Sepehri N, Manoochehri S, Rouhani H, Atyabi F. Polylactide-co-glycolide nanoparticles for controlled delivery of anticancer agents. Int J Nanomedicine. 2011;6:877–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hines DJ, Kaplan DL. Poly(lactic-co-glycolic) acid-controlled-release systems: experimental and modeling insights. Crit Rev Ther Drug Carrier Syst. 2013;30(3):257–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hamaguchi T, Matsumura Y, Suzuki M, Shimizu K, Goda R, Nakamura I, et al. NK105, a paclitaxel-incorporating micellar nanoparticle formulation, can extend in vivo antitumour activity and reduce the neurotoxicity of paclitaxel. Br J Cancer. 2005;92(7):1240–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Khoee S, Hassanzadeh S, Goliaie B. Effects of hydrophobic drug-polyesteric core interactions on drug loading and release properties of poly(ethylene glycol)-polyester-poly(ethylene glycol) triblock core-shell nanoparticles. Nanotechnology. 2007;18(17):175602.

    Article  Google Scholar 

  44. Rothstein SN, Little SR. A “tool box” for rational design of degradable controlled release formulations. J Mater Chem. 2011;21(1):29–39.

    Article  CAS  Google Scholar 

  45. Fredenberg S, Wahlgren M, Reslow M, Axelsson A. The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems—a review. Int J Pharm. 2011;415(1–2):34–52.

    Article  CAS  PubMed  Google Scholar 

  46. Middleton JC, Tipton AJ. Synthetic biodegradable polymers as orthopedic devices. Biomaterials. 2000;21(23):2335–46.

    Article  CAS  PubMed  Google Scholar 

  47. Chan S. Targeting the mammalian target of rapamycin (mTOR): a new approach to treating cancer. Br J Cancer. 2004;91(8):1420–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Schnadig I, Braun E, Mosier M, Geller RB, Lee S. Effect of APF530 on health-related quality of life (QOL) and other chemotherapy-induced nausea and vomiting (CINV) end points: phase III MAGIC trial [abstract]. J Oncol Pract: 2016 Am Soc Clin Oncol Annu Meet. 2016.

  49. Wischke C, Schwendeman SP. Principles of encapsulating hydrophobic drugs in PLA/PLGA microparticles. Int J Pharm. 2008;364(2):298–327.

    Article  CAS  PubMed  Google Scholar 

  50. Zhao YM, Zhou Q, Xu Y, Lai XY, Huang H. Antiproliferative effect of rapamycin on human T-cell leukemia cell line Jurkat by cell cycle arrest and telomerase inhibition. Acta Pharmacol Sin. 2008;29(4):481–8.

    Article  CAS  PubMed  Google Scholar 

  51. Guba M, Koehl GE, Neppl E, Doenecke A, Steinbauer M, Schlitt HJ, et al. Dosing of rapamycin is critical to achieve an optimal antiangiogenic effect against cancer. Transpl Int. 2005;18(1):89–94.

    Article  CAS  PubMed  Google Scholar 

  52. Gallo R, Padurean A, Jayaraman T, Marx S, Roque M, Adelman S, et al. Inhibition of intimal thickening after balloon angioplasty in porcine coronary arteries by targeting regulators of the cell cycle. Circulation. 1999;99(16):2164–70.

    Article  CAS  PubMed  Google Scholar 

  53. Rivera VM, Ye X, Courage NL, Sachar J, Cerasoli Jr F, Wilson JM, et al. Long-term regulated expression of growth hormone in mice after intramuscular gene transfer. Proc Natl Acad Sci U S A. 1999;96(15):8657–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kimball SR, Jefferson LS, Nguyen HV, Suryawan A, Bush JA, Davis TA. Feeding stimulates protein synthesis in muscle and liver of neonatal pigs through an mTOR-dependent process. Am J Physiol Endocrinol Metab. 2000;279(5):E1080–7.

    CAS  PubMed  Google Scholar 

  55. Hackstein H, Taner T, Logar AJ, Thomson AW. Rapamycin inhibits macropinocytosis and mannose receptor-mediated endocytosis by bone marrow-derived dendritic cells. Blood. 2002;100(3):1084–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support from the Singapore Centre on Environmental Life Sciences Engineering (SCELSE) (M4330001.C70.703012), the School of Materials Science and Engineering (M020070110), the NTU-National Healthcare Group (NTU-NHG) grant (ARG/14012), Lee Kong Chian School of Medicine Postdoctoral Fellowship support for Han Wei Hou and the Lee Kong Chian School of Medicine, Nanyang Technological University start-up grant for Per-Olof Berggren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Say Chye Joachim Loo.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Figure S1

(DOCX 112 kb)

Figure S2

(DOCX 96 kb)

Figure S3

(DOCX 91 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Y.L., Hou, H.W., Tay, H.M. et al. Preservation of Anticancer and Immunosuppressive Properties of Rapamycin Achieved Through Controlled Releasing Particles. AAPS PharmSciTech 18, 2648–2657 (2017). https://doi.org/10.1208/s12249-017-0745-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-017-0745-x

KEY WORDS

Navigation