Advertisement

AAPS PharmSciTech

, Volume 18, Issue 7, pp 2505–2516 | Cite as

Topical Formulation Containing Beeswax-Based Nanoparticles Improved In Vivo Skin Barrier Function

  • Carla Souza
  • Luis Alexandre Pedro de Freitas
  • Patrícia Maria Berardo Gonçalves Maia Campos
Research Article

Abstract

Lipid nanoparticles have shown many advantages for treatment/prevention of skin disorders with damaged skin barrier function. Beeswax is a favorable candidate for the development of nanosystems in the cosmetic and dermatological fields because of its advantages for the development of products for topical application. In the present study, beeswax-based nanoparticles (BNs) were prepared using the hot melt microemulsion technique and incorporated to a gel-cream formulation. The formulation was subsequently evaluated for its rheological stability and effect on stratum corneum water content (SCWC) and transepidermal water loss (TEWL) using in vivo biophysical techniques. BNs resulted in mean particle size of 95.72 ± 9.63 nm and zeta potential of −9.85 ± 0.57 mV. BN-loaded formulation showed shear thinning behavior, well adjusted by the Herschel-Bulkley model, and a small thixotropy index that were stable for 28 days at different temperatures. BN-loaded formulation was also able to simultaneously decrease the TEWL and increase the SCWC values 28 days after treatment. In conclusion, the novel beeswax-based nanoparticles showed potential for barrier recovery and open the perspective for its commercial use as a novel natural active as yet unexplored in the field of dermatology and cosmetics for treatment of skin diseases with damaged skin barrier function.

KEY WORDS

beeswax clinical efficacy lipid nanoparticles rheology skin barrier function 

Notes

Acknowledgments

The authors would like to thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brazil) and the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, Brazil) for the financial support to this study.

Compliance with ethical standards

Disclosure of Interest

The authors declare that they have no conflicts of interest.

REFERENCES

  1. 1.
    Machado M, Hadgraft J, Lane ME. Assessment of the variation of skin barrier function with anatomic site, age, gender and ethinicity. Int J Cosmet Sci. 2010;32(6):397–409. doi: 10.1111/j.1468-2494.2010.00587.x.CrossRefPubMedGoogle Scholar
  2. 2.
    Kim DG, Park WR, Kim JH, Cho EC, An EJ, Kim JW, et al. Fabrication of pseudo-ceramide-based lipid microparticles for recovery of skin barrier function. Colloid Surf B Biointerfaces. 2012;94:236–41. doi: 10.1016/j.colsurfb.2012.01.049.CrossRefPubMedGoogle Scholar
  3. 3.
    Keck CM, Anantaworasakul P, Patel M, Okonogi S, Singh KK, Roessner D, et al. A new concept for the treatment of atopic dermatitis: silver-nanolipid complex (sNLC). Int J Pharm. 2014;462(1–2):44–51. doi: 10.1016/j.ijpharm.2013.12.044.CrossRefPubMedGoogle Scholar
  4. 4.
    Zhang J, Smith E. Percutaneous permeation of betamethasone 17-valerate incorporated in lipid nanoparticles. J Pharm Sci. 2011;100(3):896–903. doi: 10.1002/jps.22329.CrossRefPubMedGoogle Scholar
  5. 5.
    Muller RH, Radtke M, Wissing SA. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev. 2002;54(1):131–55. doi: 10.1016/S0169-409X(02)00118-7.CrossRefGoogle Scholar
  6. 6.
    Pardeike J, Hommoss A, Müller RH. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int J Pharm. 2009;366(1–2):170–84. doi: 10.1016/j.ijpharm.2008.10.003.CrossRefPubMedGoogle Scholar
  7. 7.
    Ng S-F, Anuwi N-A, Tengku-Ahmad T-N. Topical lyogel containing corticosteroid decreases ige expression and enhances the therapeutic efficacy against atopic eczema. AAPS PharmSciTech. 2014;16(3):656–63. doi: 10.1208/s12249-014-0248-y.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Zamarioli CM, Martins R, Carvalho EC, Freitas LAP. Nanoparticles containing curcuminoids (Curcuma longa): development of topical delivery formulation. Rev Bras Farm. 2015;25(1):53–60. doi: 10.1016/j.bjp.2014.11.010.CrossRefGoogle Scholar
  9. 9.
    Montenegro L, Sinico C, Castangia I, Carbone C, Puglisi G. Idebenone-loaded solid lipid nanoparticles for drug delivery to the skin: In vitro evaluation. Int J Pharm. 2012;434(1–2):169–74. doi: 10.1016/j.ijpharm.2012.05.046.CrossRefPubMedGoogle Scholar
  10. 10.
    Kejlováa K, Kašpárková V, Krsek D, Jírová D, Kolářová H, Dvořáková M, et al. Characteristics of silver nanoparticles in vehicles for biological applications. Int J Pharm. 2015;496(2):878–85. doi: 10.1016/j.ijpharm.2015.10.024.CrossRefGoogle Scholar
  11. 11.
    Vaghasiya H, Kumar A, Sawant K. Development of solid lipid nanoparticles based controlled release system for topical delivery of terbinafine hydrochloride. Eur J Pharm Sci. 2013;49(2):311–22. doi: 10.1016/j.ejps.2013.03.013.CrossRefPubMedGoogle Scholar
  12. 12.
    Gowda DV, Gupta VK, Khan MS, Bathool A. Encapsulation of clozapine into beeswax microspheres: preparation, characterization and release kinetics. Int J PharmTech Res. 2011;3(4):2199–207.Google Scholar
  13. 13.
    Kheradmandnia S, Vasheghani-Farahani E, Nosrati M, Atyabi F. Preparation and characterization of ketoprofen-loaded solid lipidnanoparticles made from beeswax and carnauba wax. Nanomedicine. 2010;6(6):753–9. doi: 10.1016/j.nano.2010.06.003.CrossRefPubMedGoogle Scholar
  14. 14.
    Attama AA, Schicke BC, Muller-Goymann CC. Further characterization of theobroma oil–beeswax admixtures as lipid matrices for improved drug delivery systems. Eur J Pharma Biopharm. 2006;64(3):294–306. doi: 10.1016/j.ejpb.2006.06.010.CrossRefGoogle Scholar
  15. 15.
    Nosari ABFL, Lima JF, Serra OA, Freitas LAP. Improved green coffee oil antioxidant activity for cosmetical purpose by spray drying microencapsulation. Rev Bras Farm. 2015;25(3):307–11. doi: 10.1016/j.bjp.2015.04.006.CrossRefGoogle Scholar
  16. 16.
    Attama AA, Muller-Goymann CC. Effect of beeswax modification on the lipid matrix and solid lipid nanoparticle crystallinity. Colloids Surf A. 2008;315(1–3):189–95. doi: 10.1016/j.colsurfa.2007.07.035.CrossRefGoogle Scholar
  17. 17.
    Kamairudin N, Gani SSA, Masoumi HRF, Basri M, Hashim P, Mokhtar NM, et al. Modeling of a natural lipstick formulation using an artificial neural network. RSC. 2015;5:68632–8. doi: 10.1039/C5RA12749A.Google Scholar
  18. 18.
    Elder RL. Final report on the safety assessment of candelilla wax, carnauba wax, Japan wax, and beeswax. Int J Toxicol. 1984;3(3):1–41. doi: 10.3109/10915818409010515.Google Scholar
  19. 19.
    Rosiaux Y, Jannin V, Hughes S, Marchaud D. Solid lipid excipients—matrix agents for sustained drug delivery. J Control Release. 2014;188:18–30. doi: 10.1016/j.jconrel.2014.06.004.CrossRefPubMedGoogle Scholar
  20. 20.
    Liu Y, Feng N. Nanocarriers for the delivery of active ingredients and fractions extrated from natural products used in traditional Chinese medicine (TCM). Adv Colloid Interface Sci. 2015;221:60–70. doi: 10.1016/j.cis.2015.04.006.CrossRefPubMedGoogle Scholar
  21. 21.
    Mandawgade SD, Patravale VB. Development of SLNs from natural lipids: application to topical delivery of tretinoin. Int J Pharm. 2008;363(1–2):132–8. doi: 10.1016/j.ijpharm.2008.06.028.CrossRefPubMedGoogle Scholar
  22. 22.
    Freitas LAP, Zamarioli CM, Martins RM. Brazilian Patent Office. INPI—Instituto Nacional da Propriedade Industrial. Processo de obtenção de nanopartículas lipídicas sólidas contendo curcuminóides, nanopartículas lipídicas sólidas contendo curcuminóides e uso das mesmas. Registered patent number: BR1020150090170, 22/04/2015, Brazil. 2015.Google Scholar
  23. 23.
    Kim J, Sonh JY, Lee E-J, Park S-K. Rheological properties and microstructures of carbopol gel network system. Colloid Polym Sci. 2003;281:614–23. doi: 10.1007/s00396-002-0808-7.CrossRefGoogle Scholar
  24. 24.
    Zetasizer Nano-ZS. User Instructions. NBTC User Instructions. 2009.Google Scholar
  25. 25.
    Mehnert W, Mader K. Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev. 2001;47(2–3):165–96. doi: 10.1016/S0169-409X(01)00105-3.CrossRefPubMedGoogle Scholar
  26. 26.
    Muller RH, Maèder K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery: a review of the state of the art. Eur J Pharm Biopharm. 2000;50(1):161–77. doi: 10.1016/S0169-409X(02)00118-7.CrossRefPubMedGoogle Scholar
  27. 27.
    Jo DH, Kim JH, Lee TG, Kim JH. Size, surface charge, and shape determine therapeutic effects of nanoparticles on brain and retinal diseases. Nanomedicine. 2015;11(7):1603–11. doi: 10.1016/j.nano.2015.04.015.CrossRefPubMedGoogle Scholar
  28. 28.
    Saurabh CK, Gupta S, Variyar P, Sharma A. Effect of addition of nanoclay, beeswax, tween-80 and glycerol on physicochemical properties of guar gum films. Ind Crop Prod. 2016;89:109–18. doi: 10.1016/j.indcrop.2016.05.003.CrossRefGoogle Scholar
  29. 29.
    Feng S, Huang G. Effects of emulsifiers on the controlled release of paclitaxel (Taxol) from nanospheres of biodegradable polymers. J Control Release. 2001;71(1):53–69. doi: 10.1016/S0168-3659(00)00364-3.CrossRefPubMedGoogle Scholar
  30. 30.
    Rigo LA, da Silva CR, de Oliveira SM, Cabreira TN, de Bona da Silva C, Ferreira J, et al. Nanoencapsulation of rice bran oil increases its protective effects against UVB radiation-induced skin injury in mice. Eur J Pharm Biopharm. 2015;93:11–7. doi: 10.1016/j.ejpb.2015.03.020.CrossRefPubMedGoogle Scholar
  31. 31.
    Raza K, Singh B, Singal P, Wadhwa S, Katare OP. Systematically optimized biocompatible isotretinoin-loaded solid lipid nanoparticles (SLNs) for topical treatment of acne. Colloids Surf B: Biointerfaces. 2013;105:67–74. doi: 10.1016/j.colsurfb.2012.12.043.CrossRefPubMedGoogle Scholar
  32. 32.
    Souto EB, Wissing SA, Barbosa CM, Müller RH. Development of a controlled release formulation based on SLN and NLC for topical clotrimazole delivery. Int J Pharm. 2004;278(1):71–7. doi: 10.1016/j.ijpharm.2004.02.032.CrossRefPubMedGoogle Scholar
  33. 33.
    Souto EB, Muller RH, Gohla S. A novel approach based on lipid nanoparticles (SLN) for topical delivery of alpha-lipoic acid. J Microencapsul. 2005;22(6):581–92. doi: 10.1080/02652040500162378.CrossRefPubMedGoogle Scholar
  34. 34.
    Jenning V, Schafer-Korting M, Gohla SH. Vitamin A loaded solid lipid nanoparticles for topical use: drug release properties. J Control Release. 2000;66(2):115–26. doi: 10.1016/S0168-3659(99)00223-0.CrossRefPubMedGoogle Scholar
  35. 35.
    Loo CH, Basri M, Ismail R, Lau H, Tejo B, Kanthimathi M, et al. Effect of compositions in nanostructured lipid carriers (NLC) on skin hydration and occlusion. Int J Nanomedicine. 2013;8:13–22. doi: 10.2147/IJN.S35648.CrossRefPubMedGoogle Scholar
  36. 36.
    Barry BW. Rheology of dermatological vehicles. In: Dermatological Formulations—Percutaneous Absorption, Marcel Dekker, Inc., New York and Basel. 1983;18:351–396.Google Scholar
  37. 37.
    Gaspar LR, Maia Campos PMBG. Rheological behavior and the SPF of sunscreens. Int J Pharm. 2003;250(1):35–44.CrossRefPubMedGoogle Scholar
  38. 38.
    Wagemaker TAL, Silva SAM, Leonardi GR, Maia Campos PMBG. Green Coffea arabica L. seed oil influences the stability and protective effects of topical formulations. Ind Crop Prod. 2015;63:34–40. doi: 10.1016/j.indcrop.2014.09.045.CrossRefGoogle Scholar
  39. 39.
    Woolfson AD, Malcolm RK, Campbell K, Jones DS, Russell JA. Rheological, mechanical and membrane penetration properties of novel dual drug systems for percutaneous delivery. J Control Release. 2000;67(2–3):395–408. doi: 10.1016/S0168-3659(00)00230-3.CrossRefPubMedGoogle Scholar
  40. 40.
    Silva AC, Amaral MH, González-Mira E, Santos D, Ferreira D. Solid lipid nanoparticles (SLN)-based hydrogels as potential carriers for oral transmucosal delivery of risperidone: Preparation and characterization studies. Colloids Surf B: Biointerfaces. 2012;93:241–8. doi: 10.1016/j.colsurfb.2012.01.014.CrossRefPubMedGoogle Scholar
  41. 41.
    Tadros TF. Application of rheology for assessment and prediction of the long-tern physical stability of emulsions. Adv Colloid Interface Sci. 2004;108–109:227–58. doi: 10.1016/j.cis.2003.10.025.CrossRefPubMedGoogle Scholar
  42. 42.
    Lee CH, Moturi V, Lee Y. Thixotropic property in pharmaceutical formulations. J Control Release. 2009;136(2):88–98. doi: 10.1016/j.jconrel.2009.02.013.CrossRefPubMedGoogle Scholar
  43. 43.
    Briceno MI. Rheology of suspensions and emulsions. In: Pharmaceutical Emulsions and Suspensions, Marcel Dekker, Inc., New York, 2000;557–607.Google Scholar
  44. 44.
    Khurana S, Bedi PMS, Jain NK. Preparation and evaluation of solid nanoparticles based nanogel for dermal delivery of meloxicam. Chem Phys Lipids. 2013;175–176:65–72. doi: 10.1016/j.chemphyslip.2013.07.010.CrossRefPubMedGoogle Scholar
  45. 45.
    Contreras MJF, Diéguez AR, Soriano MMJ. Rheological characterization of hydro alcoholic gels–15% ethanol–of Carbopol® UltrezTM 10. Il Fármaco. 2001;56(1–7):437–41. doi: 10.1016/S0014-827X(01)01057-6.CrossRefGoogle Scholar
  46. 46.
    Güngor S, Bergisadi N. In vitro release studies on topical gel formulations of nimesulide. Pharmazie. 2003;58(2):155–6.PubMedGoogle Scholar
  47. 47.
    Liu W, Hu M, Liu W, Xue C, Xu H, Yang X. Investigation of the carbopol gel of solid lipid nanoparticles for the transdermal iontophoretic delivery of triamcinolone acetonide acetate. Int J Pharm. 2008;364(1):135–41. doi: 10.1016/j.ijpharm.2008.08.013.CrossRefPubMedGoogle Scholar
  48. 48.
    Akhtar N, Zaman SU, Khan BA, Amir MN, Ebrahimzadeh MA. Calendula extract: effects on mechanical parameters of human skin. Acta Pol Pharm. 2011;68(5):693–701.PubMedGoogle Scholar
  49. 49.
    Nakagawa N, Matsumoto M, Sakai S. In vivo measurement of the water content in the dermis by confocal Raman spectroscopy. Skin Res Technol. 2010;16(2):137–41. doi: 10.1111/j.1600-0846.2009.00410.x.CrossRefPubMedGoogle Scholar
  50. 50.
    Pople PV, Singh KK. Development and evaluation of topical formulation containing solid lipid nanoparticles of vitamin A. AAPS PharmSciTech. 2016;7(4):E63–9. doi: 10.1208/pt070491.CrossRefGoogle Scholar
  51. 51.
    Dal’Belo SE, Gaspar LR, Maia Campos PMBG. Moisturizing effect of cosmetic formulations containing aloe vera extract in different concentrations assessed by skin bioengineering techniques. Skin Res Technol. 2006;12(2):241–6. doi: 10.1111/j.0909-752X.2006.00155.x.CrossRefPubMedGoogle Scholar
  52. 52.
    Camargo Júnior FB, Gaspar LR, Campos PMBGM. Skin moisturizing effect of panthenol-based formulations. J Cosmet Sci. 2011;62(4):361–70.Google Scholar
  53. 53.
    Chon S-H, Tannahill R, Yao X, Southall MD, Pappas A. Keratinocyte differentiation and up regulation of ceramide synthesis induced by an oat lipid extract via the activation of PPAR pathways. Exp Dermatol. 2015;24(4):290–5. doi: 10.1111/exd.12658.CrossRefPubMedGoogle Scholar
  54. 54.
    Gianeti MD, Maia Campos PMBG. Efficacy evaluation of a multifunctional cosmetic formulation: the benefits of a combination of active antioxidant substances. Molecules. 2014;19(11):18268–82. doi: 10.3390/molecules191118268.CrossRefPubMedGoogle Scholar
  55. 55.
    Gaspar LR, Camargo Jr FB, Gianeti MD, Maia Campos PM. Evaluation of dermatological effects of cosmetic formulations containing Saccharomyces cerevisiae extract and vitamins. Food Chem Toxicol. 2008;46(11):3493–500. doi: 10.1016/j.fct.2008.08.028.CrossRefPubMedGoogle Scholar
  56. 56.
    Maia Campos PMBG, Gianeti MD, Camargo Jr FB, Gaspar LR. Application of tetra-isopalmitoyl ascorbic acid in cosmetic formulations: stability studies and in vivo efficacy. Eur J Pharm Biopharm. 2012;82(3):580–6. doi: 10.1016/j.ejpb.2012.08.009.CrossRefPubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2017

Authors and Affiliations

  • Carla Souza
    • 1
  • Luis Alexandre Pedro de Freitas
    • 1
  • Patrícia Maria Berardo Gonçalves Maia Campos
    • 1
  1. 1.School of Pharmaceutical Sciences of Ribeirão PretoUniversity of São PauloRibeirão PretoBrazil

Personalised recommendations