Advertisement

AAPS PharmSciTech

, Volume 18, Issue 6, pp 2102–2109 | Cite as

In Vitro and Ex Vivo Evaluation of Novel Curcumin-Loaded Excipient for Buccal Delivery

  • Flavia LaffleurEmail author
  • Franziska Schmelzle
  • Ariane Ganner
  • Stefan Vanicek
Research Article

Abstract

This study aimed to develop a mucoadhesive polymeric excipient comprising curcumin for buccal delivery. Curcumin encompasses broad range of benefits such as antioxidant, anti-inflammatory, and chemotherapeutic activity. Hyaluronic acid (HA) as polymeric excipient was modified by immobilization of thiol bearing ligands. L-Cysteine (SH) ethyl ester was covalently attached via amide bond formation between cysteine and the carboxylic moiety of hyaluronic acid. Succeeded synthesis was proved by H-NMR and IR spectra. The obtained thiolated polymer hyaluronic acid ethyl ester (HA-SH) was evaluated in terms of stability, safety, mucoadhesiveness, drug release, and permeation-enhancing properties. HA-SH showed 2.75-fold higher swelling capacity over time in comparison to unmodified polymer. Furthermore, mucoadhesion increased 3.4-fold in case of HA-SH and drug release was increased 1.6-fold versus HA control, respectively. Curcumin-loaded HA-SH exhibits a 4.4-fold higher permeation compared with respective HA. Taking these outcomes in consideration, novel curcumin-loaded excipient, namely thiolated hyaluronic acid ethyl ester appears as promising tool for pharyngeal diseases.

KEY WORDS

buccal curcumin hyaluronic acid thiomer wound healing 

Notes

Acknowledgments

The authors thank Josef Mayr in Mayr, Natters, Austria for the porcine mucosa.

Compliance with Ethical Standards

Declaration of Interest

The authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties. No writing assistance was utilized in the production of this manuscript.

References

  1. 1.
    Preeti L, Magesh K, Rajkumar K, Karthik R. Recurrent aphthous stomatitis. JOMFP. 2011;15(3):252–6.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Scully C, Shotts R. ABC of oral health. Mouth ulcers and other causes of orofacial soreness and pain. BMJ. 2000;321(7254):162–5.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Akbik D, Ghadiri M, Chrzanowski W, Rohanizadeh R. Curcumin as a wound healing agent. Life Sci. 2014;116(1):1–7.CrossRefPubMedGoogle Scholar
  4. 4.
    Hatcher H, Planalp R, Cho J, Torti FM, Torti SV. Curcumin: from ancient medicine to current clinical trials. Cell Mol Life Sci. 2008;65(11):1631–52.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Ghosh M, Singh AT, Xu W, Sulchek T, Gordon LI, Ryan RO. Curcumin nanodisks: formulation and characterization. Nanomedicine (Lond). 2011;7(2):162–7.CrossRefGoogle Scholar
  6. 6.
    Gowthamarajan K, Jawahar N, Wake P, Jain K, Sood S. Development of buccal tablets for curcumin using Anacardium occidentale gum. Carbohydr Polym. 2012;88(4):1177–83.CrossRefGoogle Scholar
  7. 7.
    Nagpal M, Sood S. Role of curcumin in systemic and oral health: an overview. J Nat Sci Biol Med. 2013;4(1):3–7.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Smart JD. Buccal drug delivery. Expert Opin Drug Deliv. 2005;2(3):507–17.CrossRefPubMedGoogle Scholar
  9. 9.
    Laffleur F. Mucoadhesive polymers for buccal drug delivery. Drug Dev Ind Pharm. 2014;40(5):591–8.CrossRefPubMedGoogle Scholar
  10. 10.
    Bernkop-Schnurch A. Thiomers: a new generation of mucoadhesive polymers. Adv Drug Deliv Rev. 2005;57(11):1569–82.CrossRefPubMedGoogle Scholar
  11. 11.
    Laffleur F, Bernkop-Schnurch A. Thiomers: promising platform for macromolecular drug delivery. Future Med Chem. 2012;4(17):2205–16.CrossRefPubMedGoogle Scholar
  12. 12.
    Nowak J, Laffleur F, Bernkop-Schnurch A. Preactivated hyaluronic acid: a potential mucoadhesive polymer for vaginal delivery. Int J Pharm. 2014;478(1):383–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Price RD, Myers S, Leigh IM, Navsaria HA. The role of hyaluronic acid in wound healing—assessment of clinical evidence. Am J Clin Dermatol. 2005;6(6):393–402.CrossRefPubMedGoogle Scholar
  14. 14.
    Laffleur F, Roggla J, Idrees MA, Griessinger J. Chemical modification of hyaluronic acid for intraoral application. J Pharm Sci-US. 2014;103(8):2414–23.CrossRefGoogle Scholar
  15. 15.
    Habeeb AF. A sensitive method for localization of disulfide containing peptides in column effluents. Anal Biochem. 1973;56(1):60–5.CrossRefPubMedGoogle Scholar
  16. 16.
    Jennings P, Koppelstaetter C, Pfaller W, Morin JP, Hartung T, Ryan MP. Assessment of a new cell culture perfusion apparatus for in vitro chronic toxicity testing—part 2: toxicological evaluation. Altex-Altern Tierexp. 2004;21(2):61–6.Google Scholar
  17. 17.
    Shaikh R, Raj Singh TR, Garland MJ, Woolfson AD, Donnelly RF. Mucoadhesive drug delivery systems. J Pharm Bioallied Sci. 2011;3(1):89–100.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Laffleur F, Wagner J, Barthelmes J. A potential tailor-made hyaluronic acid buccal delivery system comprising rotigotine for Parkinson’s disease? Future Med Chem. 2015;7(10):1225–32.CrossRefPubMedGoogle Scholar
  19. 19.
    Laffleur F, Psenner J, Suchaoin W. Permeation enhancement via thiolation: in vitro and ex vivo evaluation of hyaluronic acid-cysteine ethyl ester. J Pharm Sci. 2015;104(7):2153–60.Google Scholar
  20. 20.
    Mortazavi SA, Smart JD. An investigation into the role of water-movement and mucus gel dehydration in mucoadhesion. J Control Release. 1993;25(3):197–203.CrossRefGoogle Scholar
  21. 21.
    Mueller C, Verroken A, Iqbal J, Bernkop-Schnuerch A. Thiolated chitosans: in vitro comparison of mucoadhesive properties. J Appl Polym Sci. 2012;124(6):5046–55.Google Scholar
  22. 22.
    Menchicchi B, Fuenzalida JP, Bobbili KB, Hensel A, Swamy MJ, Goycoolea FM. Structure of chitosan determines its interactions with mucin. Biomacromolecules. 2014;15(10):3550–8.CrossRefPubMedGoogle Scholar
  23. 23.
    Meng-Lund E, Muff-Westergaard C, Sander C, Madelung P, Jacobsen J. A mechanistic based approach for enhancing buccal mucoadhesion of chitosan. Int J Pharm. 2014;461(1–2):280–5.CrossRefPubMedGoogle Scholar
  24. 24.
    Leung SHS, Robinson JR. Polymer structure features contributing to mucoadhesion. 2. J Control Release. 1990;12(3):187–94.CrossRefGoogle Scholar
  25. 25.
    Menchicchi B, Fuenzalida JP, Hensel A, Swamy MJ, David L, Rochas C, et al. Biophysical analysis of the molecular interactions between polysaccharides and mucin. Biomacromolecules. 2015;16(3):924–35.CrossRefPubMedGoogle Scholar
  26. 26.
    Peppas NA. Mucoadhesive polymers. Abstr Pap Am Chem Soc. 1990;199:343-POLY.Google Scholar
  27. 27.
    Khutoryanskiy VV. Advances in mucoadhesion and mucoadhesive polymers. Macromol Biosci. 2011;11(6):748–64.CrossRefPubMedGoogle Scholar
  28. 28.
    Patel VF, Liu F, Brown MB. Modeling the oral cavity: in vitro and in vivo evaluations of buccal drug delivery systems. J Control Release. 2012;161(3):746–56.CrossRefPubMedGoogle Scholar
  29. 29.
    Hagerstrom H, Edsman K. Interpretation of mucoadhesive properties of polymer gel preparations using a tensile strength method. J Pharm Pharmacol. 2001;53(12):1589–99.CrossRefPubMedGoogle Scholar
  30. 30.
    Lee WH, Loo CY, Bebawy M, Luk F, Mason RS, Rohanizadeh R. Curcumin and its derivatives: their application in neuropharmacology and neuroscience in the 21st century. Curr Neuropharmacol. 2013;11(4):338–78.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Clausen AE, Kast CE, Bernkop-Schnurch A. The role of glutathione in the permeation enhancing effect of thiolated polymers. Pharm Res. 2002;19(5):602–8.CrossRefPubMedGoogle Scholar
  32. 32.
    Barrett WC, DeGnore JP, Keng YF, Zhang ZY, Yim MB, Chock PB. Roles of superoxide radical anion in signal transduction mediated by reversible regulation of protein-tyrosine phosphatase 1B. J Biol Chem. 1999;274(49):34543–6.CrossRefPubMedGoogle Scholar
  33. 33.
    Sandri G, Rossi S, Ferrari F, Bonferoni MC, Zerrouk N, Caramella C. Mucoadhesive and penetration enhancement properties of three grades of hyaluronic acid using porcine buccal and vaginal tissue, Caco-2 cell lines, and rat jejunum. J Pharm Pharmacol. 2004;56(9):1083–90.CrossRefPubMedGoogle Scholar
  34. 34.
    Bravo SA, Lamas MC, Salomon CJ. Swellable matrices for the controlled-release of diclofenac sodium: formulation and in vitro studies. Pharm Dev Technol. 2004;9(1):75–83.CrossRefPubMedGoogle Scholar
  35. 35.
    Russo E, Selmin F, Baldassari S, Gennari CGM, Caviglioli G, Cilurzo F, et al. A focus on mucoadhesive polymers and their application in buccal dosage forms. J Drug Deliv Sci Technol. 2016;32:113–25.CrossRefGoogle Scholar
  36. 36.
    Laffleur F, Wagner J, Mahmood A. In vitro and ex vivo evaluation of biomaterials’ distinctive properties as a result of thiolation. Future Med Chem. 2015;7(4):449–57.CrossRefPubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2016

Authors and Affiliations

  • Flavia Laffleur
    • 1
    Email author
  • Franziska Schmelzle
    • 1
  • Ariane Ganner
    • 1
  • Stefan Vanicek
    • 2
  1. 1.Department of Pharmaceutical Technology, Institute of Pharmacy, Center for Molecular Biosciences InnsbruckUniversity of InnsbruckInnsbruckAustria
  2. 2.Institute for Inorganic and Theoretical Chemistry, Center for Molecular Biosciences InnsbruckUniversity of InnsbruckInnsbruckAustria

Personalised recommendations