Advertisement

AAPS PharmSciTech

, Volume 18, Issue 1, pp 3–14 | Cite as

Overview and Future Potential of Buccal Mucoadhesive Films as Drug Delivery Systems for Biologics

  • Miguel Montenegro-Nicolini
  • Javier O. Morales
Review Article Theme: Formulation and Delivery of Macromolecules
Part of the following topical collections:
  1. Theme: Formulation and Delivery of Macromolecules

Abstract

The main route of administration for drug products is the oral route, yet biologics are initially developed as injectables due to their limited stability through the gastrointestinal tract and solubility issues. In order to avoid injections, a myriad of investigations on alternative administration routes that can bypass enzymatic degradation and the first-pass effect are found in the literature. As an alternative site for biologics absorption, the buccal route presents with a number of advantages. The buccal mucosa is a barrier, providing protection to underlying tissue, but is more permeable than other alternative routes such as the skin. Buccal films are polymeric matrices designed to be mucoadhesive properties and usually formulated with permeability enhancers to improve bioavailability. Conventionally, buccal films for biologics are manufactured by solvent casting, yet recent developments have shown the potential of hot melt extrusion, and most recently ink jet printing as promising strategies. This review aims at depicting the field of biologics-loaded mucoadhesive films as buccal drug delivery systems. In light of the literature available, the buccal epithelium is a promising route for biologics administration, which is reflected in clinical trials currently in progress, looking forward to register and commercialize the first biologic product formulated as a buccal film.

KEY WORDS

biologics buccal delivery casting hot melt extrusion inkjet printing 

Notes

Acknowledgments

M. Montenegro-Nicolini acknowledges the funding support from CONICYT 21150995. J. O. Morales thanks the financial support from FONDECYT 11130235 and FONDAP 15130011.

References

  1. 1.
    Castán H, Ruiz MA, Clares B, Morales ME. Design, development and characterization of buccal bioadhesive films of Doxepin for treatment of odontalgia. Drug Deliv. 2015;22(6):869–76. doi: 10.3109/10717544.2014.896958
  2. 2.
    Costa IDM, Abranches RP, Garcia MTJ, Pierre MBR. Chitosan-based mucoadhesive films containing 5-aminolevulinic acid for buccal cancer’s treatment. J Photochem Photobiol B. 2014;140:266–75.CrossRefGoogle Scholar
  3. 3.
    Morales JO, McConville JT. Novel strategies for the buccal delivery of macromolecules. Drug Dev Ind Pharm. 2014;40:579–90.PubMedCrossRefGoogle Scholar
  4. 4.
    Castro PM, Fonte P, Sousa F, Madureira AR, Sarmento B, Pintado ME. Oral films as breakthrough tools for oral delivery of proteins/peptides. J Control Release. 2015;211:63–73.PubMedCrossRefGoogle Scholar
  5. 5.
    Chhina M. Overview of biological products. Center for Drug Evaluation and Research U.S. Food and Drug Administration FDA Webinar; 2013.Google Scholar
  6. 6.
    Zhao L, Ren T, Wang DD. Clinical pharmacology considerations in biologics development. Acta Pharmacol Sin. 2012;33:1339–47.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Abruzzo A, Bigucci F, Cerchiara T, Cruciani F, Vitali B, Luppi B. Mucoadhesive chitosan/gelatin films for buccal delivery of propranolol hydrochloride. Carbohydr Polym. 2012;87:581–8.CrossRefGoogle Scholar
  8. 8.
    Senel S, Kremer M, Nagy K, Squier C. Delivery of bioactive peptides and proteins across oral (buccal) mucosa. Curr Pharm Biotechnol. 2001;2:175–86.PubMedCrossRefGoogle Scholar
  9. 9.
    Morales JO, McConville JT. Manufacture and characterization of mucoadhesive buccal films. Eur J Pharm Biopharm. 2011;77:187–99.PubMedCrossRefGoogle Scholar
  10. 10.
    MonoSol Rx. MonoSol Rx and the PharmFilm pipeline. 2015. http://www.monosolrx.com/content/pipeline/overview.htm. Accessed 16 Nov 2015.
  11. 11.
    Muheem A, Shakeel F, Jahangir MA, Anwar M, Mallick N, Jain GK, et al. A review on the strategies for oral delivery of proteins and peptides and their clinical perspectives. Saudi Pharm J. 2014. doi: 10.1016/j.jsps.2014.06.004.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Klein P, Kanehisa M, DeLisi C. Prediction of protein function from sequence properties. Discriminant analysis of a data base. Biochim Biophys Acta. 1984;787:221–6.PubMedCrossRefGoogle Scholar
  13. 13.
    Leader B, Baca QJ, Golan DE. Protein therapeutics: a summary and pharmacological classification. Nat Rev Drug Discov. 2008;7:21–39.PubMedCrossRefGoogle Scholar
  14. 14.
    Park K, Kwon IC, Park K. Oral protein delivery: current status and future prospect. React Funct Polym. 2011;71:280–7.CrossRefGoogle Scholar
  15. 15.
    Genetic Engineering & Biotechnology News The Top 25 Best-Selling Drugs of 2014 | Insight & Intelligence™ In: G. E. N. http://www.genengnews.com/insight-and-intelligence/the-top-25-best-selling-drugs-of-2014/77900383/?kwrd=top%20selling%20drugs&page=2. Accessed 24 Nov 2015.
  16. 16.
    Voet D. Biochemistry. J. Wiley & Sons: New York; 1995.Google Scholar
  17. 17.
    Nehete JY, Bhambar RS, Narkhede MR, Gawali SR. Natural proteins: sources, isolation, characterization and applications. Pharmacogn Rev. 2013;7:107–16.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Pihlasalo S, Auranen L, Hänninen P, Härmä H. Method for estimation of protein isoelectric point. Anal Chem. 2012;84:8253–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Trevino SR, Scholtz JM, Pace CN. Measuring and increasing protein solubility. J Pharm Sci. 2008;97:4155–66.PubMedCrossRefGoogle Scholar
  20. 20.
    Arakawa T, Timasheff SN. Theory of protein solubility. Methods Enzymol. 1985;114:49–77.PubMedCrossRefGoogle Scholar
  21. 21.
    Evans DF, Pye G, Bramley R, Clark AG, Dyson TJ, Hardcastle JD. Measurement of gastrointestinal pH profiles in normal ambulant human subjects. Gut. 1988;29:1035–41.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Mudie DM, Murray K, Hoad CL, Pritchard SE, Garnett MC, Amidon GL, et al. Quantification of gastrointestinal liquid volumes and distribution following a 240 mL dose of water in the fasted state. Mol Pharm. 2014;11:3039–47.PubMedCrossRefGoogle Scholar
  23. 23.
    Fallingborg J, Christensen LA, Ingeman-Nielsen M, Jacobsen BA, Abildgaard K, Rasmussen HH. pH-profile and regional transit times of the normal gut measured by a radiotelemetry device. Aliment Pharmacol Ther. 1989;3:605–13.PubMedCrossRefGoogle Scholar
  24. 24.
    Bratten J, Jones MP. Prolonged recording of duodenal acid exposure in patients with functional dyspepsia and controls using a radiotelemetry pH monitoring system. J Clin Gastroenterol. 2009;43:527–33.PubMedCrossRefGoogle Scholar
  25. 25.
    Fei YJ, Kanai Y, Nussberger S, Ganapathy V, Leibach FH, Romero MF, et al. Expression cloning of a mammalian proton-coupled oligopeptide transporter. Nature. 1994;368:563–6.PubMedCrossRefGoogle Scholar
  26. 26.
    Hwang SR, Byun Y. Advances in oral macromolecular drug delivery. Expert Opin Drug Deliv. 2014;11:1955–67.PubMedCrossRefGoogle Scholar
  27. 27.
    Artursson P, Ungell AL, Löfroth JE. Selective paracellular permeability in two models of intestinal absorption: cultured monolayers of human intestinal epithelial cells and rat intestinal segments. Pharm Res. 1993;10:1123–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Nanci A. Ten Cate’s oral histology: development, structure, and function. Elsevier: St. Louis; 2008Google Scholar
  29. 29.
    McConnell EL, Fadda HM, Basit AW. Gut instincts: explorations in intestinal physiology and drug delivery. Int J Pharm. 2008;364:213–26.PubMedCrossRefGoogle Scholar
  30. 30.
    Lee HJ. Protein drug oral delivery: the recent progress. Arch Pharm Res. 2002;25:572–84.PubMedCrossRefGoogle Scholar
  31. 31.
    Zhou XH. Overcoming enzymatic and absorption barriers to non-parenterally administered protein and peptide drugs. J Control Release. 1994;29:239–52.CrossRefGoogle Scholar
  32. 32.
    Smart AL, Gaisford S, Basit AW. Oral peptide and protein delivery: intestinal obstacles and commercial prospects. Expert Opin Drug Deliv. 2014;11:1323–35.PubMedCrossRefGoogle Scholar
  33. 33.
    Lee S, Lee J, Lee DY, Kim SK, Lee Y, Byun Y. A new drug carrier, Nalpha-deoxycholyl-L: -lysyl-methylester, for enhancing insulin absorption in the intestine. Diabetologia. 2005;48:405–11.PubMedCrossRefGoogle Scholar
  34. 34.
    Pond SM, Tozer TN. First-pass elimination. Basic concepts and clinical consequences. Clin Pharmacokinet. 1984;9:1–25.PubMedCrossRefGoogle Scholar
  35. 35.
    Rowland M. Influence of route of administration on drug availability. J Pharm Sci. 1972;61:70–4.PubMedCrossRefGoogle Scholar
  36. 36.
    Chap Z, Ishida T, Chou J, Hartley CJ, Entman ML, Brandenburg D, et al. First-pass hepatic extraction and metabolic effects of insulin and insulin analogues. Am J Phys Endocrinol Metab. 1987;252:E209–17.Google Scholar
  37. 37.
    Bae SK, Yang KH, Aryal DK, Kim YG, Lee MG. Pharmacokinetics of amitriptyline and one of its metabolites, nortriptyline, in rats: little contribution of considerable hepatic first-pass effect to low bioavailability of amitriptyline due to great intestinal first-pass effect. J Pharm Sci. 2009;98:1587–601.PubMedCrossRefGoogle Scholar
  38. 38.
    Yanamandra S, Venkatesan N, Kadajji VG, Wang Z, Issar M, Betageri GV. Proliposomes as a drug delivery system to decrease the hepatic first-pass metabolism: case study using a model drug. Eur J Pharm Sci Off J Eur Fed Pharm Sci. 2014;64:26–36.Google Scholar
  39. 39.
    Squier CA, Cox P, Wertz PW. Lipid content and water permeability of skin and oral mucosa. J Invest Dermatol. 1991;96:123–6.PubMedCrossRefGoogle Scholar
  40. 40.
    Hearnden V, Sankar V, Hull K, Juras DV, Greenberg M, Kerr AR, et al. New developments and opportunities in oral mucosal drug delivery for local and systemic disease. Adv Drug Deliv Rev. 2012;64:16–28.PubMedCrossRefGoogle Scholar
  41. 41.
    Patil PC. Oral fast dissolving drug delivery system: a modern approach for patient compliance. Int J Drug Regul Aff. 2014;2(2):49–60.Google Scholar
  42. 42.
    Emedicine.medscape.com. Mouth Anatomy: Overview, Gross Anatomy: Oral Vestibule, Gross Anatomy: Oral Cavity Proper. 2016. [online] Available at: http://emedicine.medscape.com/article/1899122-overview. Accessed 5 Feb 2016.
  43. 43.
    Arya S, Rane P, Deshmukh A. Oral cavity squamous cell carcinoma: role of pretreatment imaging and its influence on management. Clin Radiol. 2014;69:916–30.PubMedCrossRefGoogle Scholar
  44. 44.
    Sudhakar Y, Kuotsu K, Bandyopadhyay AK. Buccal bioadhesive drug delivery—a promising option for orally less efficient drugs. J Control Release. 2006;114:15–40.PubMedCrossRefGoogle Scholar
  45. 45.
    Gandhi RB, Robinson JR. Oral cavity as a site for bioadhesive drug delivery. Adv Drug Deliv Rev. 1994;13:43–74.CrossRefGoogle Scholar
  46. 46.
    Tayal S, Jain N. Buccal control drug delivery system: a review. Int J Pharm Sci Res. 2011;2:13.Google Scholar
  47. 47.
    Squier CA. The permeability of keratinized and nonkeratinized oral epithelium to horseradish peroxidase. J Ultrastruct Res. 1973;43:160–77.PubMedCrossRefGoogle Scholar
  48. 48.
    Nicolazzo JA, Reed BL, Finnin BC. Buccal penetration enhancers—how do they really work? J Control Release. 2005;105:1–15.PubMedCrossRefGoogle Scholar
  49. 49.
    Bhati R, Nagrajan RK. A detailed review on oral mucosal drug delivery system. Int J Pharm Sci Res. 2012;3:659–81.Google Scholar
  50. 50.
    Silva BMA, Borges AF, Silva C, Coelho JFJ, Simões S. Mucoadhesive oral films: the potential for unmet needs. Int J Pharm. 2015;494:537–51.PubMedCrossRefGoogle Scholar
  51. 51.
  52. 52.
    Preis M, Knop K, Breitkreutz J. Mechanical strength test for orodispersible and buccal films. Int J Pharm. 2014;461:22–9.PubMedCrossRefGoogle Scholar
  53. 53.
    Europe C of, European Pharmacopoeia Commission, European Directorate for the Quality of Medicines & Healthcare (2014) European Pharmacopoeia, 8th edition. Council Of Europe : European Directorate for the Quality of Medicines and Healthcare, Strasbourg.Google Scholar
  54. 54.
    Jones E, Ojewole E, Kalhapure R, Govender T. In vitro comparative evaluation of monolayered multipolymeric films embedded with didanosine-loaded solid lipid nanoparticles: a potential buccal drug delivery system for ARV therapy. Drug Dev Ind Pharm. 2014;40:669–79.PubMedCrossRefGoogle Scholar
  55. 55.
    Buanz ABM, Belaunde CC, Soutari N, Tuleu C, Gul MO, Gaisford S. Ink-jet printing versus solvent casting to prepare oral films: effect on mechanical properties and physical stability. Int J Pharm. 2015;494:611–8.PubMedCrossRefGoogle Scholar
  56. 56.
    Jeong SH, Lee J, Woo JS. Fast disintegrating tablets. In: Wen H, Park K (eds) Oral Controlled Release Formulation Design and Drug Delivery: Theory to Practice. John Wiley & Sons, Inc.: Hoboken. 2010. doi: 10.1002/9780470640487.ch10
  57. 57.
    Saigal N, Baboota S, Ahuja A, Ali J. Fast-dissolving intra-oral drug delivery systems. Expert Opin Ther Pat. 2008;18:769–81.CrossRefGoogle Scholar
  58. 58.
    Udhan RR, Chavan V, Tribhuvan N. Mouth dissolving film and their patent: an overview. Int Reserach J Pharm. 2012;3(9):39–42.Google Scholar
  59. 59.
    Hoffmann EM, Breitenbach A, Breitkreutz J. Advances in orodispersible films for drug delivery. Expert Opin Drug Deliv. 2011;8:299–316.PubMedCrossRefGoogle Scholar
  60. 60.
    Dexter AF, Malcolm AS, Middelberg APJ. Reversible active switching of the mechanical properties of a peptide film at a fluid–fluid interface. Nat Mater. 2006;5:502–6.PubMedCrossRefGoogle Scholar
  61. 61.
    de Barros JMS, Scherer T, Charalampopoulos D, Khutoryanskiy VV, Edwards AD. A laminated polymer film formulation for enteric delivery of live vaccine and probiotic bacteria. J Pharm Sci. 2014;103:2022–32.PubMedCrossRefGoogle Scholar
  62. 62.
    Dawson PL, Hirt DE, Rieck JR, Acton JC, Sotthibandhu A. Nisin release from films is affected by both protein type and film-forming method. Food Res Int. 2003;36:959–68.CrossRefGoogle Scholar
  63. 63.
    Padgett T, Han IY, Dawson PL. Incorporation of food-grade antimicrobial compounds into biodegradable packaging films. J Food Prot. 1998;61:1330–5.PubMedCrossRefGoogle Scholar
  64. 64.
    Giovino C, Ayensu I, Tetteh J, Boateng JS. An integrated buccal delivery system combining chitosan films impregnated with peptide loaded PEG-b-PLA nanoparticles. Colloids Surf B: Biointerfaces. 2013;112:9–15.PubMedCrossRefGoogle Scholar
  65. 65.
    Giovino C, Ayensu I, Tetteh J, Boateng JS. Development and characterisation of chitosan films impregnated with insulin loaded PEG-b-PLA nanoparticles (NPs): a potential approach for buccal delivery of macromolecules. Int J Pharm. 2012;428:143–51.PubMedCrossRefGoogle Scholar
  66. 66.
    Morales JO, Huang S, Williams RO, McConville JT. Films loaded with insulin-coated nanoparticles (ICNP) as potential platforms for peptide buccal delivery. Colloids Surf B: Biointerfaces. 2014;122:38–45.PubMedCrossRefGoogle Scholar
  67. 67.
    Colonna C, Genta I, Perugini P, Pavanetto F, Modena T, Valli M, et al. 5-Methyl-pyrrolidinone chitosan films as carriers for buccal administration of proteins. AAPS PharmSciTech. 2006;7:E107–13.PubMedCentralCrossRefGoogle Scholar
  68. 68.
    Kundu J, Patra C, Kundu SC. Design, fabrication and characterization of silk fibroin-HPMC-PEG blended films as vehicle for transmucosal delivery. Mater Sci Eng C. 2008;28:1376–80.CrossRefGoogle Scholar
  69. 69.
    Li C, Koch RL, Raul VA, Bhatt PP, Johnston TP. Absorption of thyrotropin-releasing hormone in rats using a mucoadhesive buccal patch. Drug Dev Ind Pharm. 1997;23:239–46.CrossRefGoogle Scholar
  70. 70.
    Sushma M, Raju YP, Sundaresan CR, Vandana KR, Kumar NV, Chowdary VH. Transmucosal delivery of metformin—a comprehensive study. Curr Drug Deliv. 2014;11:172–8.PubMedCrossRefGoogle Scholar
  71. 71.
    Maniruzzaman M, Boateng JS, Snowden MJ, Douroumis D. A review of hot-melt extrusion: process technology to pharmaceutical products. Expert Opin Drug Deliv. 2016;13(4):493–506. doi: 10.1517/17425247.2016.1118048
  72. 72.
    Parikh T, Gupta SS, Meena AK, Vitez I, Mahajan N, Serajuddin ATM. Application of film-casting technique to investigate drug-polymer miscibility in solid dispersion and hot-melt extrudate. J Pharm Sci. 2015;104:2142–52.PubMedCrossRefGoogle Scholar
  73. 73.
    Buanz ABM, Saunders MH, Basit AW, Gaisford S. Preparation of personalized-dose salbutamol sulphate oral films with thermal ink-jet printing. Pharm Res. 2011;28:2386–92.PubMedCrossRefGoogle Scholar
  74. 74.
    Londhe VY, Umalkar KB. Formulation development and evaluation of fast dissolving film of telmisartan. Indian J Pharm Sci. 2012;74:122–6.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Lindén M. Hot-melt extrusion of modified release pellets-influence of the formulation and extrusion process on extended-and enteric release profile. 2012.Google Scholar
  76. 76.
    Sahni J, Raj S, Ahmad FJ, Khar RK. Design and in vitro characterization of buccoadhesive drug delivery system of insulin. Indian J Pharm Sci. 2008;70:61–5.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Park J-B, Prodduturi S, Morott J, Kulkarni VI, Jacob MR, Khan SI, et al. Development of an antifungal denture adhesive film for oral candidiasis utilizing hot melt extrusion technology. Expert Opin Drug Deliv. 2015;12:1–13.PubMedCrossRefGoogle Scholar
  78. 78.
    Scoutaris N, Alexander MR, Gellert PR, Roberts CJ. Inkjet printing as a novel medicine formulation technique. J Control Release. 2011;156:179–85.PubMedCrossRefGoogle Scholar
  79. 79.
    Repka MA, Munjal M, ElSohly MA, Ross SA. Temperature stability and bioadhesive properties of δ9-tetrahydrocannabinol incorporated hydroxypropylcellulose polymer matrix systems. Drug Dev Ind Pharm. 2006;32:21–32.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Arrabito G, Pignataro B. Inkjet printing methodologies for drug screening. Anal Chem. 2010;82:3104–7.PubMedCrossRefGoogle Scholar
  81. 81.
    Krampe R, Visser JC, Frijlink HW, Breitkreutz J, Woerdenbag HJ, Preis M. Oromucosal film preparations: points to consider for patient centricity and manufacturing processes. Expert Opin Drug Deliv. 2015;1–14.Google Scholar
  82. 82.
    Zhang Y, Cui L, Che X, Zhang H, Shi N, Li C, et al. Zein-based films and their usage for controlled delivery: origin, classes and current landscape. J Control Release. 2015;206:206–19.PubMedCrossRefGoogle Scholar
  83. 83.
    Siemann U. Solvent cast technology—a versatile tool for thin film production. In: Scatt. Methods Prop. Polym. Mater. Springer; 2005. pp 1–14.Google Scholar
  84. 84.
    Maniruzzaman M, Boateng JS, Snowden MJ, Douroumis D. A review of hot-melt extrusion: process technology to pharmaceutical products. ISRN Pharm. 2012.Google Scholar
  85. 85.
    Repka MA, Gutta K, Prodduturi S, Munjal M, Stodghill SP. Characterization of cellulosic hot-melt extruded films containing lidocaine. Eur J Pharm Biopharm. 2005;59:189–96.PubMedCrossRefGoogle Scholar
  86. 86.
    Jedinger N, Schrank S, Fischer JM, Breinhälter K, Khinast J, Roblegg E. Development of an abuse- and alcohol-resistant formulation based on hot-melt extrusion and film coating. AAPS PharmSciTech. 2015. doi: 10.1208/s12249-015-0373-2.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Mueannoom W, Srisongphan A, Taylor KMG, Hauschild S, Gaisford S. Thermal ink-jet spray freeze-drying for preparation of excipient-free salbutamol sulphate for inhalation. Eur J Pharm Biopharm. 2012;80:149–55.PubMedCrossRefGoogle Scholar
  88. 88.
    Wijshoff H. Structure- and fluid-dynamics in piezo inkjet printheads. Enschede: University of Twente [Host]; 2008.Google Scholar
  89. 89.
    Daly R, Harrington TS, Martin GD, Hutchings IM Inkjet printing for pharmaceutics—a review of research and manufacturing. Int J Pharm. doi:  10.1016/j.ijpharm.2015.03.017.
  90. 90.
    Houlgrave S, LaPorte GM, Stephens JC, Wilson JL. The classification of inkjet inks using accutof™ dart™ (direct analysis in real time) mass spectrometry—a preliminary study. J Forensic Sci. 2013;58:813–21.PubMedCrossRefGoogle Scholar
  91. 91.
    Essel JT, Ihnen AC, Carter JD. Production of naproxen nanoparticle colloidal suspensions for inkjet printing applications. Ind Eng Chem Res. 2014;53:2726–31.CrossRefGoogle Scholar
  92. 92.
    Genina N, Fors D, Palo M, Peltonen J, Sandler N. Behavior of printable formulations of loperamide and caffeine on different substrates—effect of print density in inkjet printing. Int J Pharm. 2013;453:488–97.PubMedCrossRefGoogle Scholar
  93. 93.
    Genina N, Janßen EM, Breitenbach A, Breitkreutz J, Sandler N. Evaluation of different substrates for inkjet printing of rasagiline mesylate. Eur J Pharm Biopharm. 2013;85:1075–83.PubMedCrossRefGoogle Scholar
  94. 94.
    Delaney JT, Smith PJ, Schubert US. Inkjet printing of proteins. Soft Matter. 2009;5:4866.CrossRefGoogle Scholar
  95. 95.
    Blum L, Coulet P. Biosensor principles and applications. Marcel Dekker Inc.: New York; 1991.Google Scholar
  96. 96.
    Zheng Q, Lu J, Chen H, Huang L, Cai J, Xu Z. Application of inkjet printing technique for biological material delivery and antimicrobial assays. Anal Biochem. 2011;410:171–6.Google Scholar
  97. 97.
    Montenegro-Nicolini M, Miranda V, Toro E, Morales JO. The use of inkjet printing for dosing biomacromolecular actives in drug delivery systems. Conference presentation at 42nd Annual Meeting & Exposition of the Controlled Release Society. Scotland: Edinburgh; 2015.Google Scholar
  98. 98.
    Bozkir A. Investigation of the stability with bracketing design in tablet form. Pharm Anal Acta. 2011. doi: 10.4172/2153-2435.S1-005.Google Scholar
  99. 99.
    Singh J, Unlu Z, Ranganathan R, Griffiths P. Aggregate properties of sodium deoxycholate and dimyristoylphosphatidylcholine mixed micelles. J Phys Chem B. 2008;112:3997–4008.PubMedCrossRefGoogle Scholar
  100. 100.
    Morales JO, Montenegro-Nicolini M, Campano-Hantscheruk F. Forma farmacéutica para administración bucal de dosis altamente controlada, liberación controlada y estable de biomacromolécula que comprende película polimérica como sustrato de impresión y una tinta de inyección impresa sobre dicha película polimérica que comprende nanoparticulas o suspensiones de nanopartículas con dicha biomacromolécula, y método de preparación.Google Scholar
  101. 101.
    Şenel S, Hıncal AA. Drug permeation enhancement via buccal route: possibilities and limitations. J Control Release. 2001;72:133–44.PubMedCrossRefGoogle Scholar
  102. 102.
    Caon T, Jin L, Simões CMO, Norton RS, Nicolazzo JA. Enhancing the buccal mucosal delivery of peptide and protein therapeutics. Pharm Res. 2014. doi: 10.1007/s11095-014-1485-1.PubMedGoogle Scholar
  103. 103.
    Aungst BJ, Rogers NJ, Shefter E. Comparison of nasal, rectal, buccal, sublingual and intramuscular insulin efficacy and the effects of a bile salt absorption promoter. J Pharmacol Exp Ther. 1988;244:23–7.PubMedGoogle Scholar
  104. 104.
    Samstein RM, Perica K, Balderrama F, Look M, Fahmy TM. The use of deoxycholic acid to enhance the oral bioavailability of biodegradable nanoparticles. Biomaterials. 2008;29:703–8.PubMedCrossRefGoogle Scholar
  105. 105.
    Gandhi R, Robinson J. Mechanisms of penetration enhancement for transbuccal delivery of salicylic acid. Int J Pharm. 1992;85:129–40.CrossRefGoogle Scholar
  106. 106.
    Gupta V, Hwang BH, Doshi N, Mitragotri S. A permeation enhancer for increasing transport of therapeutic macromolecules across the intestine. J Control Release. 2013;172:541–9.PubMedCrossRefGoogle Scholar
  107. 107.
    Hoogstraate AJ, Coos Verhoef J, Pijpers A, van Leengoed LA, Verheijden JH, Junginger HE, et al. In vivo buccal delivery of the peptide drug buserelin with glycodeoxycholate as an absorption enhancer in pigs. Pharm Res. 1996;13:1233–7.PubMedCrossRefGoogle Scholar
  108. 108.
    Golden GM, McKie JE, Potts RO. Role of stratum corneum lipid fluidity in transdermal drug flux. J Pharm Sci. 1987;76:25–8.PubMedCrossRefGoogle Scholar
  109. 109.
    Francoeur ML, Golden GM, Potts RO. Oleic acid: its effects on stratum corneum in relation to (trans)dermal drug delivery. Pharm Res. 1990;7:621–7.PubMedCrossRefGoogle Scholar
  110. 110.
    Morishita M, Barichello JM, Takayama K, Chiba Y, Tokiwa S, Nagai T. Pluronic F-127 gels incorporating highly purified unsaturated fatty acids for buccal delivery of insulin. Int J Pharm. 2001;212:289–93.PubMedCrossRefGoogle Scholar
  111. 111.
    Tsutsumi K, Obata Y, Takayama K, Loftsson T, Nagai T. Effect of cod-liver oil extract on the buccal permeation of ergotamine tartrate. Drug Dev Ind Pharm. 1998;24:757–62.PubMedCrossRefGoogle Scholar
  112. 112.
    Khutoryanskiy VV. Advances in mucoadhesion and mucoadhesive polymers. Macromol Biosci. 2011;11:748–64.PubMedCrossRefGoogle Scholar
  113. 113.
    Carvalho FC, Bruschi ML, Evangelista RC, Gremião MPD. Mucoadhesive drug delivery systems. Braz J Pharm Sci. 2010;46:1–17.CrossRefGoogle Scholar
  114. 114.
    Shaikh R, Raj Singh TR, Garland MJ, Woolfson AD, Donnelly RF. Mucoadhesive drug delivery systems. J Pharm Bio Sci. 2011;3:89–100.CrossRefGoogle Scholar
  115. 115.
    Mythri G, Kavitha K, Kumar MR, Singh SJ, others. Novel mucoadhesive polymers–a review. 2011.Google Scholar
  116. 116.
    Peh KK, Wong CF. Polymeric films as vehicle for buccal delivery: swelling, mechanical, and bioadhesive properties. J Pharm Pharm Sci. 1999;2:53–61.PubMedGoogle Scholar
  117. 117.
    Su Cha D, Choi JH, Chinnan MS, Park HJ. Antimicrobial films based on Na-alginate and κ-carrageenan. LWT—Food Sci Technol. 2002;35:715–9.CrossRefGoogle Scholar
  118. 118.
    Patel VM, Prajapati BG, Patel MM. Effect of hydrophilic polymers on buccoadhesive Eudragit patches of propranolol hydrochloride using factorial design. AAPS PharmSciTech. 2007;8:E119–26.PubMedCentralCrossRefGoogle Scholar
  119. 119.
    Rathbone M, Senel S, Pather I. Oral mucosal drug delivery and therapy. Springer: New York Heidelberg Dordrecht London; 2015.Google Scholar
  120. 120.
    Peppas NA, Buri PA. Surface, interfacial and molecular aspects of polymer bioadhesion on soft tissues. J Control Release. 1985;2:257–75.CrossRefGoogle Scholar
  121. 121.
    Senel S, Kremer MJ, Kaş S, Wertz PW, Hincal AA, Squier CA. Enhancing effect of chitosan on peptide drug delivery across buccal mucosa. Biomaterials. 2000;21:2067–71.PubMedCrossRefGoogle Scholar
  122. 122.
    Portero A, Remuñán-López C, Nielsen HM. The potential of chitosan in enhancing peptide and protein absorption across the TR146 cell culture model-an in vitro model of the buccal epithelium. Pharm Res. 2002;19:169–74.PubMedCrossRefGoogle Scholar
  123. 123.
    Ludwig A. The use of mucoadhesive polymers in ocular drug delivery. Adv Drug Deliv Rev. 2005;57:1595–639.PubMedCrossRefGoogle Scholar
  124. 124.
    Priya S, Rathnanand M, Nayanabhirama U, Ongole R. Preparation and evaluation of buccal mucoadhesive patch of betamethasone sodium posphate for the treatment of oral submucous fibrosis. J Chem Pharm Res. 2011;3:56–65.Google Scholar
  125. 125.
    Nagaraju T, Gowthami R, Rajashekar M, Sandeep S, Mallesham M, Sathish D, et al. Comprehensive review on oral disintegrating films. Curr Drug Deliv. 2013;10:96–108.PubMedCrossRefGoogle Scholar
  126. 126.
    Kumar V, Chari R, Sharma VK, Kalonia DS. Modulation of the thermodynamic stability of proteins by polyols: significance of polyol hydrophobicity and impact on the chemical potential of water. Int J Pharm. 2011;413:19–28.PubMedCrossRefGoogle Scholar
  127. 127.
    Liu X, Zhou P, Tran A, Labuza TP. Effects of polyols on the stability of whey proteins in intermediate-moisture food model systems. J Agric Food Chem. 2009;57:2339–45.PubMedCrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2016

Authors and Affiliations

  • Miguel Montenegro-Nicolini
    • 1
    • 2
  • Javier O. Morales
    • 1
    • 3
  1. 1.Department of Pharmaceutical Science and Technology, School of Chemical and Pharmaceutical SciencesUniversity of ChileSantiagoChile
  2. 2.Instituto de Salud Pública de ChileSantiagoChile
  3. 3.Advanced Center for Chronic Diseases (ACCDiS)SantiagoChile

Personalised recommendations