Skip to main content

Advertisement

Log in

Transfersomal Nanoparticles for Enhanced Transdermal Delivery of Clindamycin

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

ABSTRACT

The aim of this work was to study the potential of delivering clindamycin phosphate, as an efficient antibiotic drug, into a more absorbed, elastic ultradeformable form, transfersomes (TRSs). These vesicles showed an enhanced penetration through ex vivo permeation characters. TRSs were prepared using thin-film hydration method. Furthermore, they were evaluated for their entrapment efficiency, size, zeta potential, and morphology. Also, the prepared TRSs were converted into suitable gel formulation using carbopol 934 and were evaluated for their gel characteristics like pH, viscosity, spreadability, homogeneity, skin irritation, in vitro release, stability, and ex vivo permeation studies in rats. TRSs were efficiently formulated in a stable bilayer vesicle structure. Furthermore, clindamycin phosphate showed higher entrapment efficiency within the TRSs reaching about 93.3% ± 0.8 and has a uniform particle size. Moreover, the TRSs surface had a high negative charge which indicated the stability of the produced vesicles and resistance of aggregation. Clindamycin phosphate showed a significantly higher in vitro release (p < 0.05; ANOVA/Tukey) compared with the control carbopol gel. Furthermore, the transfersomal gel showed a significantly higher (p < 0.05; ANOVA/Tukey) cumulative amount of drug permeation and flux than both the transfersomal suspension and the control carbopol gel. In conclusion, the produced results suggest that TRS-loaded clindamycin are promising carriers for enhanced dermal delivery of clindamycin phosphate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. Andremont A, Lancar R, Le An N, Hattchouel JM, Baron S, Tavakoli T, et al. Secular trends in mortality associated with bloodstream infections in 4268 patients hospitalized in a cancer referral center between 1975 and 1989. Clin Microbiol Infect. 1996;1(3):160–7.

    Article  PubMed  Google Scholar 

  2. Touitou E, Dayan N, Bergelson L, Godin B, Eliaz M. Ethosomes—novel vesicular carriers for enhanced delivery: characterization and skin penetration properties. J Control Release. 2000;65(3):403–18.

    Article  CAS  PubMed  Google Scholar 

  3. Duangjit S, Opanasopit P, Rojanarata T, Ngawhirunpat T. Evaluation of meloxicam-loaded cationic transfersomes as transdermal drug delivery carriers. AAPS PharmSciTech. 2013;14(1):133–40.

    Article  CAS  PubMed  Google Scholar 

  4. GC IL, Wurtman RJ. Enhancement by cytidine of membrane phospholipid synthesis. J Neurochem. 1992;59(1):338–43.

    Article  Google Scholar 

  5. El Maghraby GM, Williams AC, Barry BW. Skin delivery of oestradiol from deformable and traditional liposomes: mechanistic studies. J Pharm Pharmacol. 1999;51(10):1123–34.

    Article  PubMed  Google Scholar 

  6. El Maghraby GM, Williams AC, Barry BW. Oestradiol skin delivery from ultradeformable liposomes: refinement of surfactant concentration. Int J Pharm. 2000;196(1):63–74.

    Article  PubMed  Google Scholar 

  7. Zheng WS, Fang XQ, Wang LL, Zhang YJ. Preparation and quality assessment of itraconazole transfersomes. Int J Pharm. 2012;436(1–2):291–8.

    Article  CAS  PubMed  Google Scholar 

  8. Elsayed MM, Abdallah OY, Naggar VF, Khalafallah NM. Deformable liposomes and ethosomes: mechanism of enhanced skin delivery. Int J Pharm. 2006;322(1–2):60–6.

    Article  CAS  PubMed  Google Scholar 

  9. Alvi IA, Madan J, Kaushik D, Sardana S, Pandey RS, Ali A. Comparative study of transfersomes, liposomes, and niosomes for topical delivery of 5-fluorouracil to skin cancer cells: preparation, characterization, in-vitro release, and cytotoxicity analysis. Anti-Cancer Drugs. 2011;22(8):774–82.

    Article  CAS  PubMed  Google Scholar 

  10. Duangjit S, Opanasopit P, Rojanarata T, Ngawhirunpat T. Characterization and in vitro skin permeation of meloxicam-loaded liposomes versus transfersomes. J Drug Delivery. 2011;2011:418316.

    Article  Google Scholar 

  11. Schatzlein A, Cevc G. Non-uniform cellular packing of the stratum corneum and permeability barrier function of intact skin: a high-resolution confocal laser scanning microscopy study using highly deformable vesicles (transfersomes). Br J Dermatol. 1998;138(4):583–92.

    Article  CAS  PubMed  Google Scholar 

  12. Malakar J, Sen SO, Nayak AK, Sen KK. Formulation, optimization and evaluation of transferosomal gel for transdermal insulin delivery. Saudi Pharm J. 2012;20(4):355–63.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Duangjit S, Obata Y, Sano H, Onuki Y, Opanasopit P, Ngawhirunpat T, et al. Comparative study of novel ultradeformable liposomes: menthosomes, transfersomes and liposomes for enhancing skin permeation of meloxicam. Biol Pharm Bull. 2014;37(2):239–47.

    Article  CAS  PubMed  Google Scholar 

  14. Gupta A, Aggarwal G, Singla S, Arora R. Transfersomes: a novel vesicular carrier for enhanced transdermal delivery of sertraline: development, characterization, and performance evaluation. Sci Pharm. 2012;80(4):1061–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Akarsu S, Fetil E, Yucel F, Gul E, Gunes AT. Efficacy of the addition of salicylic acid to clindamycin and benzoyl peroxide combination for acne vulgaris. J Dermatol. 2012;39(5):433–8.

    Article  CAS  PubMed  Google Scholar 

  16. Borglund E, Hagermark O, Nord CE. Impact of topical clindamycin and systemic tetracycline on the skin and colon microflora in patients with acne vulgaris. Scand J Infect Dis Suppl. 1984;43:76–81.

    CAS  PubMed  Google Scholar 

  17. van Hoogdalem EJ. Transdermal absorption of topical anti-acne agents in man; review of clinical pharmacokinetic data. J Eur Acad Dermatol Venereol. 1998;11 Suppl 1:S13–9. discussion S28-9.

  18. Jivrani Shilpa DPVK. Formulation, development and evaluation of niosomal drug delivery system for clindamycin phosphate. Pharma Sci Monitor. 2014;5(1):256–74.

    Google Scholar 

  19. Akhavan A, Bershad S. Topical acne drugs: review of clinical properties, systemic exposure, and safety. Am J Clin Dermatol. 2003;4(7):473–92.

    Article  PubMed  Google Scholar 

  20. Castro GA, Ferreira LA. Novel vesicular and particulate drug delivery systems for topical treatment of acne. Expert Opin Drug Deliv. 2008;5(6):665–79.

    Article  CAS  PubMed  Google Scholar 

  21. Shanmugam S, Song CK, Nagayya-Sriraman S, Baskaran R, Yong CS, Choi HG, et al. Physicochemical characterization and skin permaetion of liposome formulations containing clindamycin phosphate. Arch Pharm Res. 2009;32(7):1067–75.

    Article  CAS  PubMed  Google Scholar 

  22. Huang ZJ, Li T, Guo XJ, Wang YT, Yang MQ, Huang SL, et al. Technical study of vinpocetine micelles prepared by thin-film hydration method. Zhong Yao Cai. 2012;35(11):1850–4.

    CAS  PubMed  Google Scholar 

  23. Berger N, Sachse A, Bender J, Schubert R, Brandl M. Filter extrusion of liposomes using different devices: comparison of liposome size, encapsulation efficiency, and process characteristics. Int J Pharm. 2001;223(1–2):55–68.

    Article  CAS  PubMed  Google Scholar 

  24. Destremaut F, Salmon JB, Qi L, Chapel JP. Microfluidics with on-line dynamic light scattering for size measurements. Lab Chip. 2009;9(22):3289–96.

    Article  CAS  PubMed  Google Scholar 

  25. Leung AB, Suh KI, Ansari RR. Particle-size and velocity measurements in flowing conditions using dynamic light scattering. Appl Opt. 2006;45(10):2186–90.

    Article  PubMed  Google Scholar 

  26. Abdellatif AAH, El Rasoul SA, Osman S. Gold nanoparticles decorated with octreotide for somatostatin receptors targeting. Int J Pharm Sci Res. 2015;7(1):14–20.

    Google Scholar 

  27. Mahmoud EA, Bendas ER, Mohamed MI. Effect of formulation parameters on the preparation of superporous hydrogel self-nanoemulsifying drug delivery system (SNEDDS) of carvedilol. AAPS PharmSciTech. 2010;11(1):221–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Osman SK, Soliman GM, El Rasoul SA. Physically cross-linked hydrogels of beta -cyclodextrin polymer and Poly(ethylene glycol)-cholesterol as delivery systems for macromolecules and small drug molecules. Curr Drug Deliv. 2015;12(4):415–24.

    Article  CAS  PubMed  Google Scholar 

  29. Liberman HA RM, Banker GS. Pharmaceutical dosage form, disperse systems. 1989.

  30. Misal GD, Gouri, Gulkari V. Formulation and evaluation of herbal gel. Indian J Nat Prod Res. 2012;3(4):501–5.

    CAS  Google Scholar 

  31. Shivhare UD, Jain KB, Mathur VB, Bhusari KP, Roy AA. Formulation development and evaluation of diclofenac sodium gel using water soluble polyacrylamide polymer digest. Int J Nano Biomater. 2009;4(2):285–90.

    Google Scholar 

  32. Ammar HO, Ghorab M, El-Nahhas SA, Higazy IM. Proniosomes as a carrier system for transdermal delivery of tenoxicam. Int J Pharm. 2011;405(1–2):42–152.

    Google Scholar 

  33. Pillai O, Panchagnula R. Transdermal delivery of insulin from poloxamer gel: ex vivo and in vivo skin permeation studies in rat using iontophoresis and chemical enhancers. J Control Release. 2003;89(1):127–40.

    Article  CAS  PubMed  Google Scholar 

  34. Gacek MM, Berg JC. Effect of surfactant hydrophile-lipophile balance (HLB) value on mineral oxide charging in apolar media. J Colloid Interface Sci. 2015;449:192–7.

    Article  CAS  PubMed  Google Scholar 

  35. Ravouru N, Kondreddy P, Korakanchi D, Haritha M. Formulation and evaluation of niosomal nasal drug delivery system of folic acid for brain targeting. Curr Drug Discov Technol. 2013;10(4):270–82.

    Article  CAS  PubMed  Google Scholar 

  36. Ghanbarzadeh S, Arami S. Enhanced transdermal delivery of diclofenac sodium via conventional liposomes, ethosomes, and transfersomes. Biomed Res Int. 2013;2013:616810.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Vieville J, Tanty M, Delsuc MA. Polydispersity index of polymers revealed by DOSY NMR. J Magn Reson. 2011;212(1):169–73.

    Article  CAS  PubMed  Google Scholar 

  38. Aghajani M, Shahverdi AR, Amani A. The use of artificial neural networks for optimizing polydispersity index (PDI) in nanoprecipitation process of acetaminophen in microfluidic devices. AAPS PharmSciTech. 2012 Sep 21.

  39. Liu X, Xu H, Xia H, Wang D. Rapid seeded growth of monodisperse, quasi-spherical, citrate-stabilized gold nanoparticles via H2O2 reduction. Langmuir. 2012;28(38):13720–6.

    Article  CAS  PubMed  Google Scholar 

  40. Greenwood R. Review of the measurement of zeta potentials in concentrated aqueous suspensions using electroacoustics. Adv Colloid Interf Sci. 2003;106:55–81.

    Article  CAS  Google Scholar 

  41. Ali MF, Salem HF, Abdelmohsen HF, Attia SK. Preparation and clinical evaluation of nano-transferosomes for treatment of erectile dysfunction. Drug Des Devel Ther. 2015;9:2431–47.

    PubMed  PubMed Central  Google Scholar 

  42. Arora G, Malik K, Singh I, Arora S, Rana V. Formulation and evaluation of controlled release matrix mucoadhesive tablets of domperidone using Salvia plebeian gum. J Adv Pharm Technol Res. 2011;2(3):163–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kirajavainen M MJ, Saukkasaari M, Valjakka-Koskela R, Kiesvaara J. Phospholipids affects stratum corneum lipid bilayer fluidity and drug partitioning into the bilayers. In: Release JC, editor; 1999. p. 58:207–14.

Download references

ACKNOWLEDGMENTS

The authors would like to thank Zobida Hassan, N. Elsaid, R. Abdelaal, and M. Hamdy for their help and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed A. H. Abdellatif.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdellatif, A.A.H., Tawfeek, H.M. Transfersomal Nanoparticles for Enhanced Transdermal Delivery of Clindamycin. AAPS PharmSciTech 17, 1067–1074 (2016). https://doi.org/10.1208/s12249-015-0441-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-015-0441-7

KEY WORDS

Navigation