AAPS PharmSciTech

, Volume 16, Issue 4, pp 922–933 | Cite as

The Improvement of the Dissolution Rate of Ziprasidone Free Base from Solid Oral Formulations

  • Daniel Zakowiecki
  • Krzysztof Cal
  • Kamil Kaminski
  • Karolina Adrjanowicz
  • Lech Swinder
  • Ewa Kaminska
  • Grzegorz Garbacz
Research Article


This work aims at increasing solubility and dissolution rate of ziprasidone free base—Biopharmaceutics Classifaction System (BCS) class II compound. The authors describe a practical approach to amorphization and highlight problems that may occur during the development of formulations containing amorphous ziprasidone, which was obtained by grinding in high-energy planetary ball mills or cryogenic mills. The release of ziprasidone free base from the developed formulations was compared to the reference drug product containing crystalline ziprasidone hydrochloride—Zeldox® hard gelatin capsules. All preparations were investigated using compendial tests (USP apparatuses II and IV) as well as novel, biorelevant dissolution tests. The novel test methods simulate additional elements of mechanical and hydrodynamic stresses, which have an impact on solid oral dosage forms, especially during gastric emptying. This step may prove to be particularly important for many formulations of BCS class II drugs that are often characterized by narrow absorption window, such as ziprasidone. The dissolution rate of the developed ziprasidone free base preparations was found to be comparable or even higher than in the case of the reference formulation containing ziprasidone hydrochloride, whose water solubility is about 400 times higher than its free base.


amorphization dissolution stress test device enhanced dissolution solubility improvement ziprasidone free base formulations 



Karolina Adrjanowicz acknowledges financial assistance from the National Centre for Research and Development (Nanomaterials and their potential application in nanobiomedicine).

Kaminska Ewa is thankful for the financial support from the National Center of Science based on decision DEC-2013/09/D/NZ7/04194

Grzegorz Garbacz would like to thank the German Federal Ministry of Education and Research for the financial support (BMBF FKZ 03IPT612C).


  1. 1.
    Benet LZ, Wu CY, Custodio JM. Predicting drug absorption and the effects of food on oral bioavailability. Bull Tech Gattefosse. 2006;99:8.Google Scholar
  2. 2.
    Kumar A, Sahoo SK, Padhee K, Kochar P, Satapathy A, Pathak N. Review on solubility enhancement techniques for hydrophobic drugs. Pharm Glob. 2011;3(3):001–7.Google Scholar
  3. 3.
    Bushrab NF, Müller RH. Nanocrystals of poorly soluble drugs for oral administration. New Drugs. 2003;5:20–2.Google Scholar
  4. 4.
    Lipinski C. Poor aqueous solubility—an industry wide problem in drug discovery. Am Pharm Rev. 2002;2:82–5.Google Scholar
  5. 5.
    Yadav VB, Yadav AV. Enhancement of solubility and dissolution rate of BCS class II pharmaceuticals by nonaquious granulation technique. Int J Pharm Res Dev. 2010;12:1–12.Google Scholar
  6. 6.
    Florence AT, Attwood D. Drug absorption and routes of administration. In: Physicochemical principles of pharmacy. 4th ed. London: Pharmaceutical Press; 2006. p. 329–91.Google Scholar
  7. 7.
    Dressman JB, Thelen K, Jantratid E. Towards quantitative prediction of oral drug absorption. Clin Pharmacokinet. 2008;47(10):655–67. doi: 10.2165/00003088-200847100-00003.CrossRefPubMedGoogle Scholar
  8. 8.
    Adrjanowicz K, Grzybowska K, Kaminski K, Hawelek L, Paluch M, Zakowiecki D. Comprehensive studies on physical and chemical stability in liquid and glassy states of telmisartan (TEL): solubility advantages given by cryomilled and quenched material. Philos Mag. 2011;91(13–15):1926–48. doi: 10.1080/14786435.2010.534742.CrossRefGoogle Scholar
  9. 9.
    Adrjanowicz K, Kaminski K, Grzybowska K, Hawelek L, Paluch M, Gruszka I, et al. Effect of cryogrinding on chemical stability of the sparingly water-soluble drug furosemide. Pharm Res. 2011;28(12):3220–36. doi: 10.1007/s11095-011-0496-4.PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Kaminska E, Adrjanowicz K, Kaminski K, Wlodarczyk P, Hawelek L, Kolodziejczyk K, et al. A new way of stabilization of furosemide upon cryogenic grinding by using acylated saccharides matrices. The role of hydrogen bonds in decomposition mechanism. Mol Pharm. 2013;10(5):1824–35.CrossRefPubMedGoogle Scholar
  11. 11.
    Kaminski K, Adrjanowicz K, Wojnarowska Z, Grzybowska K, Hawelek L, Paluch M, et al. Molecular dynamics of the cryomilled base and hydrochloride ziprasidones by means of dielectric spectroscopy. J Pharm Sci. 2011;100(7):2642–57. doi: 10.1002/jps.22479.CrossRefPubMedGoogle Scholar
  12. 12.
    Tarnacka M, Adrjanowicz K, Kaminska E, Kaminski K, Grzybowska K, Kolodziejczyk K, et al. Molecular dynamics of itraconazole at ambient and high pressure. Phys Chem Chem Phys. 2013;15(47):20742–52.CrossRefPubMedGoogle Scholar
  13. 13.
    Murdande SB, Pikal MJ, Shanker RM, Bogner RH. Solubility advantage of amorphous pharmaceuticals: II. Application of quantitative thermodynamic relationships for prediction of solubility enhancement in structurally diverse insoluble pharmaceuticals. Pharm Res. 2010;27(12):2704–14. doi: 10.1007/s11095-010-0269-5.CrossRefPubMedGoogle Scholar
  14. 14.
    Hancock BC, Parks M. What is the true solubility advantage for amorphous pharmaceuticals? Pharm Res. 2000;17(4):397–404.CrossRefPubMedGoogle Scholar
  15. 15.
    Adrjanowicz K, Zakowiecki D, Kaminski K, Hawelek L, Grzybowska K, Tarnacka M, et al. Molecular dynamics in supercooled liquid and glassy states of antibiotics: azithromycin, clarithromycin and roxithromycin studied by dielectric spectroscopy. Advantages given by the amorphous state. Mol Pharm. 2012;9(6):1748–63.CrossRefPubMedGoogle Scholar
  16. 16.
    Kaminski K, Kaminska E, Adrjanowicz K, Grzybowiska K, Wlodarczyk P, Paluch M, et al. Dielectric relaxation study on tramadol monohydrate and its hydrochloride salt. J Pharm Sci. 2010;99(1):94–106. doi: 10.1002/jps.21799.CrossRefPubMedGoogle Scholar
  17. 17.
    Taylor D. Ziprasidone in the management of schizophrenia: the QT interval issue in context. CNS Drugs. 2003;17(6):423–30.CrossRefPubMedGoogle Scholar
  18. 18.
    Cada DJ, Levien T, Baker DE. Ziprasidone. Hosp Pharm. 2001;36:645–56.Google Scholar
  19. 19.
    Daniel DG, Copeland LF, Tamminga C. Ziprasidone. In: In Schatzberg AF, Nemeroff CB, editors. Essentials of clinical psychopharmacology. Washington: American Psychiatric Publishing; 2006. p. 297–305.Google Scholar
  20. 20.
    Deshmukh SS, Potnis VV, Mahaparale PR, Kasture PV, Gharge VS. Development and evaluation of ziprasidone hydrochloride fast disintegrating/dissolving tablets using complexation techniques. Indian J Pharm Educ Res. 2009;43(4):300–7.Google Scholar
  21. 21.
    Pfizer. Briefing document for Zeldox® capsules (ziprasidone HCl) for FDA Psychopharmacological Drugs Advisory Committee. 2000.Google Scholar
  22. 22.
    Pfizer. Zeldox®, Package Insert. 2001.Google Scholar
  23. 23.
    Howard HR, Prakash C, Seeger TF. Ziprasidone hydrochloride. Drugs Future. 1994;19(6):560–3.CrossRefGoogle Scholar
  24. 24.
    Busch FR, Hausberger ACG, Rasadi B, Arenson DR. Zirpasidone formulations, EP0965343. 1999.Google Scholar
  25. 25.
    Garbacz G, Klein S, Weitschies W. A biorelevant dissolution stress test device—background and experiences. Expert Opin Drug Deliv. 2010;7(11):1251–61. doi: 10.1517/17425247.2010.527943.CrossRefPubMedGoogle Scholar
  26. 26.
    Garbacz G, Weitschies W. Investigation of dissolution behavior of diclofenac sodium extended release formulations under standard and biorelevant test conditions. Drug Dev Ind Pharm. 2010;36(5):518–30. doi: 10.3109/03639040903311081.CrossRefPubMedGoogle Scholar
  27. 27.
    Garbacz G, Cade D, Benameur H, Weitschies W. Bio-relevant dissolution testing of hard capsules prepared from different shell materials using the dynamic open flow through test apparatus. Eur J Pharm Sci. 2014;57:264–72.CrossRefPubMedGoogle Scholar
  28. 28.
    NFT20-045. Chemical products for industrial use—determination of water solubility of solid and liquids with low solubility-flask method. 1985.Google Scholar
  29. 29.
    Zakowiecki D, Cal K. Development of rapid and robust stability-indicating method for analysis of ziprasidone (hydrochloride and freebase) as drug substance and in medicines by UPLC. Acta Pol Pharm. 2012;69(5):809–19.PubMedGoogle Scholar
  30. 30.
    Garbacz G, Blume H, Weitschies W. Investigation of the dissolution characteristics of nifedipine extended-release formulations using USP apparatus 2 and a novel dissolution apparatus. Dissolut Technol. 2009;16:7–13.CrossRefGoogle Scholar
  31. 31.
    Garbacz G, Golke B, Wedemeyer RS, Axell M, Soderlind E, Abrahamsson B, et al. Comparison of dissolution profiles obtained from nifedipine extended release once a day products using different dissolution test apparatuses. Eur J Pharm Sci. 2009;38(2):147–55.CrossRefPubMedGoogle Scholar
  32. 32.
    Garbacz G, Wedemeyer RS, Nagel S, Giessmann T, Monnikes H, Wilson CG, et al. Irregular absorption profiles observed from diclofenac extended release tablets can be predicted using a dissolution test apparatus that mimics in vivo physical stresses. Eur J Pharm Biopharm. 2008;70(2):421–8.Google Scholar
  33. 33.
    NDA20-825. Clinical Pharmacology and Biopharmaceutics Review. (20.10.2000). 2000.Google Scholar
  34. 34.
    ICH. CPMP/ICH/283/95 – ICH Topic Q3C (R4) Impurities: Guideline for residual solvents. London, February 2009. 2009.Google Scholar
  35. 35.
    U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER). Guidance for Industry. Waiver of In Vivo Bioavailability and Bioequivalence Studies for Immediate-Release Solid Oral Dosage Forms Based on a Biopharmaceutics Classification System. In: CDER, 2000.Google Scholar
  36. 36.
    Abrahamsson B, Lennernäs H. Application of the Biopharmaceutics Classification System now and in the future. Drug bioavailability: estimation of solubility, permeability, absorption and bioavailability,. In: In van de Waterbeemd H, Thesta B, editors. Application of the Biopharmaceutics Classification System now and in the future Wiley-VCH 2nd ed.; 2009. p. 523–612.Google Scholar
  37. 37.
    Miceli JJ, Glue P, Alderman J, Wilner K. The effect of food on the absorption of oral ziprasidone. Psychopharmacol Bull. 2007;40(3):58–68.PubMedGoogle Scholar
  38. 38.
    Pfizer. ZELDOX® (ziprasidone hydrochloride) capsules 20, 40, 60, and 80 mg - Product Monograph. Kirkland, Quebec, Canada 2011.Google Scholar
  39. 39.
    Craig DQ, Royall PG, Kett VL, Hopton ML. The relevance of the amorphous state to pharmaceutical dosage forms: glassy drugs and freeze dried systems. Int J Pharm. 1999;179(2):179–207.CrossRefPubMedGoogle Scholar
  40. 40.
    Hancock BC, Zografi G. Characteristics and significance of the amorphous state in pharmaceutical systems. J Pharm Sci. 1997;86(1):1–12.CrossRefPubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2015

Authors and Affiliations

  • Daniel Zakowiecki
    • 1
  • Krzysztof Cal
    • 2
  • Kamil Kaminski
    • 3
  • Karolina Adrjanowicz
    • 4
  • Lech Swinder
    • 1
  • Ewa Kaminska
    • 5
  • Grzegorz Garbacz
    • 6
    • 7
  1. 1.Pharmaceutical Works Polpharma SAStarogard GdanskiPoland
  2. 2.Department of Pharmaceutical TechnologyMedical University of GdanskGdanskPoland
  3. 3.Institute of PhysicsUniversity of SilesiaKatowicePoland
  4. 4.NanoBioMedical CentreAdam Mickiewicz UniversityPoznanPoland
  5. 5.Department of Pharmacognosy and PhytochemistryMedical University of Silesia in KatowiceSosnowiecPoland
  6. 6.Institute of PharmacyUniversity of GreifswaldGreifswaldGermany
  7. 7.Physiolution GmbHGreifswaldGermany

Personalised recommendations