Advertisement

AAPS PharmSciTech

, Volume 16, Issue 6, pp 1327–1334 | Cite as

Enhancement of Oral Bioavailability of Curcumin by a Novel Solid Dispersion System

  • Liandong HuEmail author
  • Yanjing Shi
  • Jian Heng Li
  • Na Gao
  • Jing Ji
  • Feng Niu
  • Queting Chen
  • Xiaoning Yang
  • Shaocheng Wang
Research Article

Abstract

The objective of this study was to improve the solubility and bioavailability of curcumin by a new curcumin dripping pills (Cur-DPs) formulation using melt mixing methods. The optimal formulation consisted of Polyethoxylated 40 hydrogenated castor oil (Cremophor RH40), Poloxamer 188, and Polyethylene glycol 4000 (PEG 4000). Differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and Fourier-transform infrared spectroscopy (FT-IR) were used to verify the forming of Cur-DPs. All the physical characterization information proved the formation of Cur-DPs, and the results demonstrated the superiority of the dripping pills in dissolution rates. The pharmacokinetic study of Cur-DPs was performed in rats compared to the pure curcumin suspension. The oral bioavailability of poorly water-soluble curcumin was successfully improved by CUR-DPs. And the stability of prepared Cur-DP was also in a good state in 3 months. These results identified the Cur-DPs was an effective new approach for pharmaceutical application.

KEY WORDS

curcumin dripping pills oral bioavailability physicochemical properties stability 

Notes

ACKNOWLEDGMENTS

This work was supported by the Medical and Engineering Science Research Center of Hebei University (No. BM201109), Hebei Provincial Natural Science Foundation of China—Shijiazhuang Pharmaceutical Group (CSPC) Foundation (No. H2013201274) and the Top Young Talents Program of Hebei Province.

REFERENCES

  1. 1.
    López-Lázaro M. Anticancer and carcinogenic properties of curcumin: considerations for its clinical development as a cancer chemopreventive and chemotherapeutic agent. Mol Nutr Food Res. 2008;52 suppl 1:S103–27.PubMedGoogle Scholar
  2. 2.
    Hu L, Jia Y, Niu F, Jia Z, Yang X, Jiao K. Preparation and enhancement of oral bioavailability of curcumin using microemulsions vehicle. J Agric Food Chem. 2012;60(29):7137–41.CrossRefPubMedGoogle Scholar
  3. 3.
    John MK, Xie H, Bell EC, Liang D. Development and pharmacokinetic evaluation of a curcumin co-solvent formulation. Anticancer Res. 2013;33(10):4285–91.PubMedGoogle Scholar
  4. 4.
    Yoysungnoen P, Wirachwong P, Changtam C, Suksamrarn A, Patumraj S. Anti-cancer and anti-angiogenic effects of curcumin and tetrahydrocurcumin on implanted hepatocellular carcinoma in nude mice. World J Gastroenterol. 2008;14(13):2003–9.PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Yu H, Huang Q. Improving the oral bioavailability of curcumin using novel organogel-based nanoemulsions. J Agric Food Chem. 2012;60(21):5373–9.CrossRefPubMedGoogle Scholar
  6. 6.
    Visser MR, Baert L, Klooster G, Schueller L, Geldof M, Vanwelkenhuysen I, et al. Inulin solid dispersion technology to improve the absorption of the BCS Class IV drug TMC240. Eur J Pharm Biopharm. 2010;74(2):233–8.CrossRefPubMedGoogle Scholar
  7. 7.
    Wan S, Sun Y, Qi X, Tan F. Improved bioavailability of poorly water-soluble drug curcumin in cellulose acetate solid dispersion. AAPS PharmSciTech. 2012;13(1):159–66.PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Tønnesen HH, Másson M, Loftsson T. Studies of curcumin and curcuminoids. XXVII. Cyclodextrin complexation: solubility, chemical and photochemical stability. Int J Pharm. 2002;244(1–2):127–35.CrossRefPubMedGoogle Scholar
  9. 9.
    Yang KY, Lin LC, Tseng TY, Wang SC, Tsai TH. Oral bioavailability of curcumin in rat and the herbal analysis from Curcumalonga by LC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci. 2007;853(1–2):183–9.CrossRefPubMedGoogle Scholar
  10. 10.
    Xiao Y, Chen X, Yang L, Zhu X, Zou L, Meng F, et al. Preparation and oral bioavailability study of curcuminoid-loaded microemulsion. J Agric Food Chem. 2013;61(15):3654–60.CrossRefPubMedGoogle Scholar
  11. 11.
    Saengkrit N, Saesoo S, Srinuanchai W, Phunpee S, Ruktanonchai UR. Influence of curcumin-loaded cationic liposome on anticancer activity for cervical cancer therapy. Colloids Surf B: Biointerfaces. 2014;114:349–56.CrossRefPubMedGoogle Scholar
  12. 12.
    Francis AP, Murthy PB, Devas T. Bis-demethoxy curcumin analog nanoparticles: synthesis, characterization, and anticancer activity in vitro. J Nanosci Nanotechnol. 2014;14(7):4865–73.CrossRefPubMedGoogle Scholar
  13. 13.
    Vo CL, Park C, Lee BJ. Current trends and future perspectives of solid dispersions containing poorly water-soluble drugs. Eur J Pharm Biopharm. 2013;85(3 Pt B):799–813.CrossRefPubMedGoogle Scholar
  14. 14.
    Chu Y, Zhang L, Wang XY, Guo JH, Guo ZX, Ma XH. The effect of compound danshen dripping pills, a Chinese herb medicine, on the pharmacokinetics and pharmacodynamics of warfarin in rats. J Ethnopharmacol. 2011;137(3):1457–61.CrossRefPubMedGoogle Scholar
  15. 15.
    Hatfield MJ, Tsurkan LG, Hyatt JL, Edwards CC, Lemoff A, Jeffries C, et al. Modulation of esterified drug metabolism by tanshinones from Salvia miltiorrhiza (“Danshen”). J Nat Prod. 2013;76(1):36–44.PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Cao H, Zhai J, Mu W, Lei X, Cao H, Liu C, et al. Use of comparative effectiveness research for similar Chinese patent medicine for angina pectoris of coronary heart disease: a new approach based on patient-important outcomes. Trials. 2014;15:84.PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Jang DJ, Kim ST, Lee K, Oh E. Improved bioavailability and antiasthmatic efficacy of poorly soluble curcumin-solid dispersion granules obtained using fluid bed granulation. Biomed Mater Eng. 2014;24(1):413–29.PubMedGoogle Scholar
  18. 18.
    Arya P, Pathak K. Assessing the viability of microsponges as gastroretentive drug delivery system of curcumin: optimization and pharmacokinetics. Int J Pharm. 2014;460(1–2):1–12.CrossRefPubMedGoogle Scholar
  19. 19.
    Narang AS, Delmarre D, Gao D. Stabledrugencapsulation in micelles and microemulsions. Int J Pharm. 2007;345(1–2):9–25.CrossRefPubMedGoogle Scholar
  20. 20.
    Horvát S, Fehér A, Wolburg H, Sipos P, Veszelka S, Tóth A, et al. Sodium hyaluronate as a mucoadhesive component in nasal formulation enhances delivery of molecules to brain tissue. Eur J Pharm Biopharm. 2009;72(1):252–9.CrossRefPubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2015

Authors and Affiliations

  • Liandong Hu
    • 1
    • 6
    Email author
  • Yanjing Shi
    • 1
  • Jian Heng Li
    • 1
  • Na Gao
    • 1
  • Jing Ji
    • 2
  • Feng Niu
    • 3
  • Queting Chen
    • 4
  • Xiaoning Yang
    • 5
  • Shaocheng Wang
    • 1
  1. 1.School of Pharmaceutical SciencesHebei UniversityBaodingPeople’s Republic of China
  2. 2.Department of HematologyAffiliated Hospital of Hebei UniversityBaodingPeople’s Republic of China
  3. 3.CSPC Pharmaceutical Group NBP Pharmaceutical Co. LtdShijiazhuangPeople’s Republic of China
  4. 4.Department of Surgical OncologyAffiliated Hospital of Hebei UniversityBaodingPeople’s Republic of China
  5. 5.Tianjin Hemay Bio-Tech Co., LtdTianjinPeople’s Republic of China
  6. 6.Key Laboratory of Pharmaceutical Quality Control of Hebei ProvinceHebei UniversityBaodingPeople’s Republic of China

Personalised recommendations