Advertisement

AAPS PharmSciTech

, Volume 16, Issue 1, pp 10–20 | Cite as

Polymeric Micelles for Multi-Drug Delivery in Cancer

  • Hyunah ChoEmail author
  • Tsz Chung Lai
  • Keishiro Tomoda
  • Glen S. Kwon
Review Article

Abstract

Drug combinations are common in cancer treatment and are rapidly evolving, moving beyond chemotherapy combinations to combinations of signal transduction inhibitors. For the delivery of drug combinations, i.e., multi-drug delivery, major considerations are synergy, dose regimen (concurrent versus sequential), pharmacokinetics, toxicity, and safety. In this contribution, we review recent research on polymeric micelles for multi-drug delivery in cancer. In concurrent drug delivery, polymeric micelles deliver multi-poorly water-soluble anticancer agents, satisfying strict requirements in solubility, stability, and safety. In sequential drug delivery, polymeric micelles participate in pretreatment strategies that “prime” solid tumors and enhance the penetration of secondarily administered anticancer agent or nanocarrier. The improved delivery of multiple poorly water-soluble anticancer agents by polymeric micelles via concurrent or sequential regimens offers novel and interesting strategies for drug combinations in cancer treatment.

KEY WORDS

controlled release drug combination drug delivery drug solubilization polymeric micelles 

Notes

ACKNOWLEDGMENTS

This work was partially supported by Global Innovative Research Center program of the National Research Foundation of Korea and by the Intramural Research Program (Global RNAi Carrier Initiative) of Korean Institute of Science and Technology.

REFERENCES

  1. 1.
    Burrell RA, McGranahan N, Bartek J, Swanton C. The causes and consequences of genetic heterogeneity in cancer evolution. Nature. 2013;501:338–45.PubMedCrossRefGoogle Scholar
  2. 2.
    Hainaut P, Plymoth A. Targeting the hallmarks of cancer: towards a rational approach to next-generation cancer therapy. Curr Opin Oncol. 2013;25:50–1.PubMedCrossRefGoogle Scholar
  3. 3.
    Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70.PubMedCrossRefGoogle Scholar
  4. 4.
    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.PubMedCrossRefGoogle Scholar
  5. 5.
    Heppner GH. Tumor heterogeneity. Cancer Res. 1984;44(6):2259–65.PubMedGoogle Scholar
  6. 6.
    Frei 3rd E, Karon M, Levin RH, Freireich EJ, Taylor RJ, Hananian J, et al. The effectiveness of combinations of antileukemic agents in inducing and maintaining remission in children with acute leukemia. Blood. 1965;26:642–56.PubMedGoogle Scholar
  7. 7.
    Hersh EM, Carbone PP, Wong VG, Freireich EJ. Inhibition of the primary immune response in man by anti-metabolites. Cancer Res. 1965;25:997–1001.PubMedGoogle Scholar
  8. 8.
    Canellos GP, Abramson JS, Fisher DC, LaCasce AS. Treatment of favorable, limited-stage Hodgkin’s lymphoma with chemotherapy without consolidation by radiation therapy. J Clin Oncol. 2010;28:1611–5.PubMedCrossRefGoogle Scholar
  9. 9.
    Canellos GP, Gollub J, Neuberg D, Mauch P, Shulman LN. Primary systemic treatment of advanced Hodgkin’s disease with EVA (etoposide, vinblastine, doxorubicin): 10-year follow-up. Ann Oncol. 2003;14:268–72.PubMedCrossRefGoogle Scholar
  10. 10.
    Martoni A, Cacciari N, Angelelli B, Zamagni C, Pannuti F. Chemotherapy of advanced ovarian cancer. Front Biosci. 1997;2:g20–6.PubMedGoogle Scholar
  11. 11.
    McGuire 3rd WP. Current status of taxane and platinum-based chemotherapy in ovarian cancer. J Clin Oncol. 2003;21:133s-5s.CrossRefGoogle Scholar
  12. 12.
    Rigas JR. Taxane-platinum combinations in advanced non-small cell lung cancer: a review. Oncologist. 2004;9:16–23.PubMedCrossRefGoogle Scholar
  13. 13.
    Guarneri V, Conte PF. The curability of breast cancer and the treatment of advanced disease. Eur J Nucl Med Mol I. 2004;31:S149–61.CrossRefGoogle Scholar
  14. 14.
    Melisi D, Troiani T, Damiano V, Tortora G, Ciardiello F. Therapeutic integration of signal transduction targeting agents and conventional anti-cancer treatments. Endo-Relat Cancer. 2004;11:51–68.CrossRefGoogle Scholar
  15. 15.
    Ku MS. Use of the biopharmaceutical classification system in early drug development. AAPS J. 2008;10:208–12.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Narvekar M, Xue HY, Eoh JY, Wong HL. Nanocarrier for poorly water-soluble anticancer drugs-barriers of translation and solutions. AAPS Pharm Sci. 2014;15:822–3.CrossRefGoogle Scholar
  17. 17.
    Savjani KT, Gajjar AK, Savjani JK. Drug solubility: importance and enhancement techniques. ISRN Pharm. 2012;2012:195727.PubMedCentralPubMedGoogle Scholar
  18. 18.
    Gelderblom H, Verweij J, Nooter K, Sparreboom A. Cremophor EL: the drawbacks and advantages of vehicle selection for drug formulation. Eur J Cancer. 2001;37:1590–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Coors EA, Seybold H, Merk HF, Mahler V. Polysorbate 80 in medical products and nonimmunologic anaphylactoid reactions. Ann Allerg Asthma Im. 2005;95:593–9.CrossRefGoogle Scholar
  20. 20.
    Shelley WB, Talanin N, Shelley ED. Polysorbate 80 hypersensitivity. Lancet. 1995;345:1312–3.PubMedCrossRefGoogle Scholar
  21. 21.
    Peer D, Karp JM, Hong S, FaroKHzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007;2:751–60.PubMedCrossRefGoogle Scholar
  22. 22.
    Hu CM, Aryal S, Zhang L. Nanoparticle-assisted combination therapies for effective cancer treatment. Ther Deliv. 2010;1:323–34.PubMedCrossRefGoogle Scholar
  23. 23.
    Lee JH, Nan A. Combination drug delivery approaches in metastatic breast cancer. J Drug Deliv. 2012;2012:915375.PubMedCentralPubMedGoogle Scholar
  24. 24.
    Parhi P, Mohanty C, Sahoo SK. Nanotechnology-based combinational drug delivery: an emerging approach for cancer therapy. Drug Discov Today. 2012;17:1044–52.PubMedCrossRefGoogle Scholar
  25. 25.
    Batist G, Gelmon KA, Chi KN, Miller WH, Chia SKL, Mayer LD, et al. Safety, pharmacokinetics, and efficacy of CPX-1 liposome injection in patients with advanced solid tumors. Clin Cancer Res. 2009;15:692–700.PubMedCrossRefGoogle Scholar
  26. 26.
    Lancet JE, Cortes JE, Hogge DE, Tallman MS, Kovacsovics TJ, Damon LE, et al. Phase II, multicenter, randomized, open label trial of CPX-351 (cytarabine:daunorubicin) liposome injection versus cytarabine and daunorubicin in patients with untreated AML 60–75 years of age. Blood. 2014;123:3239–46.PubMedCrossRefGoogle Scholar
  27. 27.
    Greco F, Vicent MJ, Gee S, Jones AT, Gee J, Nicholson RI, et al. Investigating the mechanism of enhanced cytotoxicity of HPMA copolymer-Dox-AGM in breast cancer cells. J Control Release. 2007;117:28–39.PubMedCrossRefGoogle Scholar
  28. 28.
    Sengupta S, Eavarone D, Capila I, Zhao GL, Watson N, Kiziltepe T, et al. Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature. 2005;436:568–72.PubMedCrossRefGoogle Scholar
  29. 29.
    Tekade RK, Dutta T, Gajbhiye V, Jain NK. Exploring dendrimer towards dual drug delivery: pH responsive simultaneous drug-release kinetics. J Microencapsul. 2009;26:287–96.PubMedCrossRefGoogle Scholar
  30. 30.
    Croy SR, Kwon GS. Polymeric micelles for drug delivery. Curr Pharma Des. 2006;12:4669–84.CrossRefGoogle Scholar
  31. 31.
    Jones M, Leroux J. Polymeric micelles—a new generation of colloidal drug carriers. Eur J Pharm Biopharm. 1999;48:101–11.PubMedCrossRefGoogle Scholar
  32. 32.
    Miyata K, Christie RJ, Kataoka K. Polymeric micelles for nano-scale drug delivery. React Funct Polym. 2011;71:227–34.CrossRefGoogle Scholar
  33. 33.
    Kwon GS. Polymeric micelles for delivery of poorly water-soluble compounds. Crit Rev Ther Drug. 2003;20:357–403.CrossRefGoogle Scholar
  34. 34.
    Rapoport N. Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog Polym Sci. 2007;32:962–90.CrossRefGoogle Scholar
  35. 35.
    Kwon GS, Okano T. Polymeric micelles as new drug carriers. Adv Drug Deliver Rev. 1996;71:227–34.Google Scholar
  36. 36.
    Sutton D, Wang S, Nasongkla N, Gao J, Dormidontova EE. Doxorubicin and beta-lapachone release and interaction with micellar core materials: experiment and modeling. Exp Biol Med. 2007;232:1090–9.CrossRefGoogle Scholar
  37. 37.
    Lavasanifar A, Samuel J, Kwon GS. Poly(ethylene oxide)-block-poly(L-amino acid) micelles for drug delivery. Adv Drug Deliv Rev. 2002;54:169–90.PubMedCrossRefGoogle Scholar
  38. 38.
    Batrakova EV, Bronich TK, Vetro JA, Kabanov AV. Polymeric micelles as drug carriers. In: Torchilin VP, editor. Nanoparticulates as drug carriers. London: World Scientific; 2006. p. 63–7.Google Scholar
  39. 39.
    Lipinski CA. Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods. 2000;44:235–49.PubMedCrossRefGoogle Scholar
  40. 40.
    Kim S, Shi Y, Kim JY, Park K, Cheng JX. Overcoming the barriers in micellar drug delivery: loading efficiency, in vivo stability, and micelle-cell interaction. Expert Opin Drug Deliv. 2010;7:49–62.PubMedCrossRefGoogle Scholar
  41. 41.
    Matsumura Y, Kataoka K. Preclinical and clinical studies of anticancer agent-incorporating polymer micelles. Cancer Sci. 2009;100:572–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Lee KS, Chung HC, Im SA, Park YH, Kim CS, Kim SB, et al. Multicenter phase II trial of Genexol-PM, a Cremophor-free, polymeric micelle formulation of paclitaxel, in patients with metastatic breast cancer. Breast Cancer Res Treat. 2008;108:241–50.PubMedCrossRefGoogle Scholar
  43. 43.
    Matsumura Y. The drug discovery by nanomedicine and its clinical experience. Jpn J Clin Oncol. 2014;44:515–25.PubMedCrossRefGoogle Scholar
  44. 44.
    Cho H, Lai TC, Kwon GS. Poly(ethylene glycol)-block-poly(epsilon-caprolactone) micelles for combination drug delivery: evaluation of paclitaxel, cyclopamine and gossypol in intraperitoneal xenograft models of ovarian cancer. J Control Release. 2013;166:1–9.PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Hasenstein JR, Shin HC, Kasmerchak K, Buehler D, Kwon GS, Kozak KR. Antitumor activity of Triolimus: a novel multidrug-loaded micelle containing paclitaxel, rapamycin, and 17-AAG. Mol Cancer Ther. 2012;11:2233–42.PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Shin HC, Alani AW, Cho H, Bae Y, Kolesar JM, Kwon GS. A 3-in-1 polymeric micelle nanocontainer for poorly water-soluble drugs. Mol Pharm. 2011;8:1257–65.PubMedCrossRefGoogle Scholar
  47. 47.
    Shin HC, Cho H, Lai TC, Kozak KR, Kolesar JM, Kwon GS. Pharmacokinetic study of 3-in-1 poly(ethylene glycol)-block-poly(d,l-lactic acid) micelles carrying paclitaxel, 17-allylamino-17-demethoxygeldanamycin, and rapamycin. J Control Release. 2012;163:93–9.PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Bae Y, Diezi TA, Zhao A, Kwon GS. Mixed polymeric micelles for combination cancer chemotherapy through the concurrent delivery of multiple chemotherapeutic agents. J Control Release. 2007;122:324–30.PubMedCrossRefGoogle Scholar
  49. 49.
    Bae Y, Alani AWG, Rockich NC, Lai TSZC, Kwon GS. Mixed pH-sensitive polymeric micelles for combination drug delivery. Pharm Res-Dordr. 2010;27:2421–32.CrossRefGoogle Scholar
  50. 50.
    Duncan R. Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer. 2006;6:688–701.PubMedCrossRefGoogle Scholar
  51. 51.
    Greco F, Vicent MJ. Combination therapy: opportunities and challenges for polymer-drug conjugates as anticancer nanomedicines. Adv Drug Deliver Rev. 2009;61:1203–13.CrossRefGoogle Scholar
  52. 52.
    Na HS, Lim YK, Jeong YI, Lee HS, Lim YJ, Kang MS, et al. Combination antitumor effects of micelle-loaded anticancer drugs in a CT-26 murine colorectal carcinoma model. Int J Pharm. 2010;383:192–200.PubMedCrossRefGoogle Scholar
  53. 53.
    Wang H, Zhao Y, Wu Y, Hu YL, Nan K, Nie G, et al. Enhanced anti-tumor efficacy by co-delivery of doxorubicin and paclitaxel with amphiphilic methoxy PEG-PLGA copolymer nanoparticles. Biomaterials. 2011;32:8281–90.PubMedCrossRefGoogle Scholar
  54. 54.
    Han Y, He Z, Schulz A, Bronich TK, Jordan R, Luxenhofer R, et al. Synergistic combinations of multiple chemotherapeutic agents in high capacity poly(2-oxazoline) micelles. Mol Pharm. 2012;9:2302–13.PubMedCentralPubMedGoogle Scholar
  55. 55.
    Chitkara D, Singh S, Kumar V, Danquah M, Behrman SW, Kumar N, et al. Micellar delivery of cyclopamine and gefitinib for treating pancreatic cancer. Mol Pharm. 2012;9:2350–7.PubMedGoogle Scholar
  56. 56.
    Katragadda U, Teng Q, Rayaprolu BM, Chandran T, Tan C. Multi-drug delivery to tumor cells via micellar nanocarriers. Int J Pharm. 2011;419:281–6.PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Desale SS, Cohen SM, Zhao Y, Kabanov AV, Bronich TK. Biodegradable hybrid polymer micelles for combination drug therapy in ovarian cancer. J Control Release. 2013;171:339–48.PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Cho H, Kwon GS. Thermosensitive poly-(d, l-lactide-co-glycolide)-block-poly(ethylene glycol)-block-poly-(d, l-lactide-co-glycolide) hydrogels for multi-drug delivery. J Drug Target. 2014;22:669–77.PubMedCrossRefGoogle Scholar
  59. 59.
    Jain RK, Stylianopoulos T. Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol. 2010;7:653–64.PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Jang SH, Wientjes MG, Lu D, Au JL. Drug delivery and transport to solid tumors. Pharm Res. 2003;20:1337–50.PubMedCrossRefGoogle Scholar
  61. 61.
    Maeda H, Nakamura H, Fang J. The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev. 2013;65:71–9.PubMedCrossRefGoogle Scholar
  62. 62.
    Lu D, Wientjes MG, Lu Z, Au JL. Tumor priming enhances delivery and efficacy of nanomedicines. J Pharmacol Exp Ther. 2007;322:80–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Ait-Oudhia S, Straubinger RM, Mager DE. Systems pharmacological analysis of paclitaxel-mediated tumor priming that enhances nanocarrier deposition and efficacy. J Pharmacol Exp Ther. 2013;344:103–12.PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Cho H, Kwon GS. Polymeric micelles for neoadjuvant cancer therapy and tumor-primed optical imaging. ACS Nano. 2011;5:8721–9.PubMedCrossRefGoogle Scholar
  65. 65.
    Cabral H, Matsumoto Y, Mizuno K, Chen Q, Murakami M, Kimura M, et al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat Nanotechnol. 2011;6:815–23.Google Scholar
  66. 66.
    Yap TA, Omlin A, de Bono JS. Development of therapeutic combinations targeting major cancer signaling pathways. J Clin Oncol. 2013;31:1592–605.PubMedCrossRefGoogle Scholar
  67. 67.
    Scripture CD, Figg WD. Drug interactions in cancer therapy. Nat Rev Cancer. 2006;6:546–58.PubMedCrossRefGoogle Scholar
  68. 68.
    Rijcken CJ, Snel CJ, Schiffelers RM, van Nostrum CF, Hennink WE. Hydrolysable core-crosslinked thermosensitive polymeric micelles: synthesis, characterisation and in vivo studies. Biomaterials. 2007;28:5581–93.PubMedCrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2014

Authors and Affiliations

  • Hyunah Cho
    • 1
    • 2
    Email author
  • Tsz Chung Lai
    • 2
  • Keishiro Tomoda
    • 2
  • Glen S. Kwon
    • 2
    • 3
  1. 1.Department of Pharmaceutical and Administrative SciencesSt. Louis College of PharmacySt. LouisUSA
  2. 2.Pharmaceutical Sciences Division, School of PharmacyUniversity of WisconsinMadisonUSA
  3. 3.Center for Theragnosis, Biomedical Research InstituteKorea Institute of Science and Technology (KIST)SeoulRepublic of Korea

Personalised recommendations