AAPS PharmSciTech

, Volume 16, Issue 1, pp 171–181 | Cite as

Formulation, Physicochemical Characterization, and In Vitro Study of Chitosan/HPMC Blends-Based Herbal Blended Patches

  • Jirapornchai SuksaereeEmail author
  • Chaowalit Monton
  • Fameera Madaka
  • Tun Chusut
  • Worawan Saingam
  • Wiwat Pichayakorn
  • Prapaporn Boonme
Research Article


The current work prepared chitosan/hydroxypropyl methylcellulose (HPMC) blends and studied the possibility of chitosan/HPMC blended patches for Zingiber cassumunar Roxb. The blended patches without/with crude Z. cassumunar oil were prepared by homogeneously mixing the 3.5% w/v of chitosan solution and 20% w/v of HPMC solution, and glycerine was used as plasticizer. Then, they were poured into Petri dish and produced the blended patches in hot air oven at 70 ± 2°C. The blended patches were tested and evaluated by the physicochemical properties: moisture uptake, swelling ratio, erosion, porosity, Fourier transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffraction, and photographed the surface and cross-section morphology under SEM technique. Herbal blended patches were studied by the in vitro release and skin permeation of active compound D. The blended patches could absorb the moisture and became hydrated patches that occurred during the swelling of blended patches. They were eroded and increased by the number of porous channels to pass through out for active compound D. In addition, the blended patches indicated the compatibility of the blended ingredients and homogeneous smooth and compact. The blended patches made from chitosan/HPMC blends provide a controlled release and skin permeation behavior of compound D. Thus, the blended patches could be suitably used for herbal medicine application.


chitosan formulation herbal blended patches HPMC Zingiber cassumunar Roxb 



The authors would like to acknowledge the Faculty of Pharmacy and the Research Institute of Rangsit University for financial supports (Grant No. 74/2555).


  1. 1.
    Mazzitelli S, Pagano C, Giusepponi D, Nastruzzi C, Perioli L. Hydrogel blends with adjustable properties as patches for transdermal delivery. Int J Pharm. 2013;454(1):47–57. doi: 10.1016/j.ijpharm.2013.06.081.PubMedCrossRefGoogle Scholar
  2. 2.
    Pichayakorn W, Suksaeree J, Boonme P, Amnuaikit T, Taweepreda W, Ritthidej GC. Deproteinized natural rubber latex/hydroxypropylmethyl cellulose blending polymers for nicotine matrix films. Ind Eng Chem Res. 2012;51(25):8442–52. doi: 10.1021/ie300608j.CrossRefGoogle Scholar
  3. 3.
    Pichayakorn W, Suksaeree J, Boonme P, Amnuaikit T, Taweepreda W, Ritthidej GC. Nicotine transdermal patches using polymeric natural rubber as the matrix controlling system: effect of polymer and plasticizer blends. J Membr Sci. 2012;411–412:81–90. doi: 10.1016/j.memsci.2012.04.017.CrossRefGoogle Scholar
  4. 4.
    Pichayakorn W, Suksaeree J, Boonme P, Amnuaikit T, Taweepreda W, Ritthidej GC. Deproteinized natural rubber as membrane controlling layer in reservoir type nicotine transdermal patches. Chem Eng Res Des. 2012;91(3):520–9. doi: 10.1016/j.cherd.2012.09.011.CrossRefGoogle Scholar
  5. 5.
    Suksaeree J, Charoenchai L, Monton C, Chusut T, Sakunpak A, Pichayakorn W, et al. Preparation of a pseudolatex-membrane for ketoprofen transdermal drug delivery systems. Ind Eng Chem Res. 2013;52(45):15847–54. doi: 10.1021/ie402345a.CrossRefGoogle Scholar
  6. 6.
    Suksaeree J, Monton C, Sakunpak A, Charoonratana T. Formulation and in vitro study of ketoprofen pseudolatex gel for transdermal drug delivery systems. Int J Pharm Pharm Sci. 2014;6(2):248–53.Google Scholar
  7. 7.
    Babu VR, Sairam M, Hosamani KM, Aminabhavi TM. Preparation of sodium alginate-methylcellulose blend microspheres for controlled release of nifedipine. Carbohydr Polym. 2007;69(2):241–50. doi: 10.1016/j.carbpol.2006.09.027.CrossRefGoogle Scholar
  8. 8.
    Vijayan V, Reddy KR, Sakthivel S, Swetha C. Optimization and charaterization of repaglinide biodegradable polymeric nanoparticle loaded transdermal patchs: in vitro and in vivo studies. Colloids Surf B: Biointerfaces. 2013;111:150–5. doi: 10.1016/j.colsurfb.2013.05.020.PubMedCrossRefGoogle Scholar
  9. 9.
    Lao LL, Venkatraman SS, Peppas NA. Modeling of drug release from biodegradable polymer blends. Eur J Pharm Biopharm. 2008;70(3):796–803. doi: 10.1016/j.ejpb.2008.05.024.PubMedCrossRefGoogle Scholar
  10. 10.
    Abedalwafa M, Wang F, Wang L, Li C. Biodegradable poly-epsilon-caprolactone (PCL) for tissue engineering applications: a review. Rev Adv Mater Sci. 2013;34(2):123–40.Google Scholar
  11. 11.
    Llorens E, Armelin E, del Mar Pérez-Madrigal M, del Valle LJ, Alemán C, Puiggalí J. Nanomembranes and nanofibers from biodegradable conducting polymers. Polymers. 2013;5(3):1115–57. doi: 10.3390/polym5031115.CrossRefGoogle Scholar
  12. 12.
    Roether JA, Rai R, Wolf R, Tallawi M, Boccaccini AR. Biodegradable poly(glycerol sebacate)/poly(3-hydroxybutyrate)-TiO2 nanocomposites: fabrication and characterisation. Mater Sci Technol. 2014;30(5):574–81. doi: 10.1179/1743284713Y.0000000499.CrossRefGoogle Scholar
  13. 13.
    Engineer C, Parikh J, Raval A. Review on hydrolytic degradation behavior of biodegradable polymers from controlled drug delivery dystem. Trends Biomater Artif Organs. 2011;25(2):79–85.Google Scholar
  14. 14.
    Leja K, Lewandowicz G. Polymer biodegradation and biodegradable polymers—a review. Pol J Environ Stud. 2010;19(2):255–66.Google Scholar
  15. 15.
    Mohanty AK, Misra M, Hinrichsen G. Biofibres, biodegradable polymers and biocomposites: an overview. Macromol Mater Eng. 2000;276–277(1):1–24. doi: 10.1002/(sici)1439-2054(20000301)276:1<1::aid-mame1>;2-w.CrossRefGoogle Scholar
  16. 16.
    Agnihotri SA, Aminabhavi TM. Controlled release of clozapine through chitosan microparticles prepared by a novel method. J Control Release. 2004;96(2):245–59. doi: 10.1016/j.jconrel.2004.01.025.PubMedCrossRefGoogle Scholar
  17. 17.
    Ge Y-b, Chen D-w, Xie L-p, Zhang R-q. Optimized preparation of daidzein-loaded chitosan microspheres and in vivo evaluation after intramuscular injection in rats. Int J Pharm. 2007;338(1–2):142–51. doi: 10.1016/j.ijpharm.2007.01.046.PubMedCrossRefGoogle Scholar
  18. 18.
    Papadimitriou S, Bikiaris D, Avgoustakis K, Karavas E, Georgarakis M. Chitosan nanoparticles loaded with dorzolamide and pramipexole. Carbohydr Polym. 2008;73(1):44–54. doi: 10.1016/j.carbpol.2007.11.007.CrossRefGoogle Scholar
  19. 19.
    Aranaz I, Mengibar M, Harris R, Panos I, Miralles B, Acosta N, et al. Functional characterization of chitin and chitosan. Curr Chem Biol. 2009;3(2):203–30. doi: 10.2174/187231309788166415.Google Scholar
  20. 20.
    Santiago de Alvarenga E. Characterization and properties of chitosan. In: Elnashar M, editor. Biotechnology of biopolymers. Croatia: InTech; 2011. p. 91–108.Google Scholar
  21. 21.
    Chen Y, Zhang Y, Feng X. An improved approach for determining permeability and diffusivity relevant to controlled release. Chem Eng Sci. 2010;65(22):5921–8. doi: 10.1016/j.ces.2010.08.028.CrossRefGoogle Scholar
  22. 22.
    Khalil SKH, El-Feky GS, El-Banna ST, Khalil WA. Preparation and evaluation of warfarin-β-cyclodextrin loaded chitosan nanoparticles for transdermal delivery. Carbohydr Polym. 2012;90(3):1244–53. doi: 10.1016/j.carbpol.2012.06.056.PubMedCrossRefGoogle Scholar
  23. 23.
    Michalak I, Mucha M. The release of active substances from selected carbohydrate biopolymer membranes. Carbohydr Polym. 2012;87(4):2432–8. doi: 10.1016/j.carbpol.2011.11.013.CrossRefGoogle Scholar
  24. 24.
    Kofuji K, Ito T, Murata Y, Kawashima S. The controlled release of a drug from biodegradable chitosan gel beads. Chem Pharm Bull (Tokyo). 2000;48(4):579–81.CrossRefGoogle Scholar
  25. 25.
    Hye Kim J, Il Kim S, Kwon I-B, Hyun Kim M, Ik LJ. Simple fabrication of silver hybridized porous chitosan-based patch for transdermal drug-delivery system. Mater Lett. 2013;95:48–51. doi: 10.1016/j.matlet.2012.12.078.CrossRefGoogle Scholar
  26. 26.
    Rathva SR, Patel NN, Shah V, Upadhyay UM. Herbal transdermal patches: a review. Int J Drug Dis Herb Res. 2012;2(2):397–402.Google Scholar
  27. 27.
    Tangyuenyongwatana P, Kowapradit J, Opanasopit P, Gritsanapan W. Cellular transport of anti-inflammatory pro-drugs originated from a herbal formulation of Zingiber cassumunar and Nigella sativa. Chin Med. 2009;4(1):19.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Walters KA. Topical and transdermal therapeutic systems. In: Walters KA, editor. Dermatological and transdermal formulations (drugs and the pharmaceutical sciences). New York: Informa Healthcare; 2002. p. 1–112.CrossRefGoogle Scholar
  29. 29.
    Pongprayoon U, Soontornsaratune P, Jarikasem S, Sematong T, Wasuwat S, Claeson P. Topical antiinflammatory activity of the major lipophilic constituents of the rhizome of Zingiber cassumunar. Part I: the essential oil. Phytomedicine. 1997;3(4):319–22. doi: 10.1016/S0944-7113(97)80003-7.PubMedCrossRefGoogle Scholar
  30. 30.
    Pongprayoon U, Tuchinda P, Claeson P, Sematong T, Reutrakul V, Soontornsaratune P. Topical antiinflammatory activity of the major lipophilic constituents of the rhizome of Zingiber cassumunar. Part II: hexane extractives. Phytomedicine. 1997;3(4):323–6. doi: 10.1016/S0944-7113(97)80004-9.PubMedCrossRefGoogle Scholar
  31. 31.
    Kanjanapothi D, Soparat P, Panthong A, Tuntiwachwuttikul P, Reutrakul V. A uterine relaxant compound from Zingiber cassumunar. Planta Med. 1987;53:329–32.PubMedCrossRefGoogle Scholar
  32. 32.
    Panthong A, Kanjanapothi D, Niwatananant W, Tuntiwachwuttikul P, Reutrakul V. Anti-inflammatory activity of compound D {(E)-4-(3′,4′-dimethoxyphenyl)but-3-en-2-ol} isolated from Zingiber cassumunar Roxb. Phytomedicine. 1997;4(3):207–12. doi: 10.1016/S0944-7113(97)80069-4.PubMedCrossRefGoogle Scholar
  33. 33.
    Rajesh N, Siddaramaiah H, Gowda DV, Somashekar CN. Formulation and evaluation of biopolymer based transdermal drug delivery. Int J Pharm Pharm Sci. 2010;2 Suppl 2:142–7.Google Scholar
  34. 34.
    Chen Z, Deng M, Chen Y, He G, Wu M, Wang J. Preparation and performance of cellulose acetate/polyethyleneimine blend microfiltration membranes and their applications. J Membr Sci. 2004;235(1–2):73–86. doi: 10.1016/j.memsci.2004.01.024.CrossRefGoogle Scholar
  35. 35.
    Suksaeree J, Boonme P, Taweepreda W, Ritthidej GC, Pichayakorn W. Relationships between hydraulic permeability and porosity of natural rubber blended films. Isan J Pharm Sci. 2012;8(1):89–95.Google Scholar
  36. 36.
    Suksaeree J, Madaka F, Monton C, Sakunpak A, Chusut T, Charoonratana T. Method validation of (E)-4-(3′,4′-dimethoxyphenyl)-but-3-en-1-ol in Zingiber cassumunar Roxb. with different extraction techniques. Int J Pharm Pharm Sci. 2014;6(3):295–8.Google Scholar
  37. 37.
    Suksaeree J, Charoenchai L, Pichayakorn W, Boonme P. HPLC method development and validation of (E)-4-(3,4-dimethoxyphenyl)-but-3-en-1-ol in Zingiber cassumunar Roxb. from Thai Herbal Compress ball. Int J Pharm Pharm Sci Res. 2013;3(3):115–7.Google Scholar
  38. 38.
    Limpongsa E, Umprayn K. Preparation and evaluation of diltiazem hydrochloride diffusion-controlled transdermal delivery system. AAPS PharmSciTech. 2008;9(2):464–70. doi: 10.1208/s12249-008-9062-8.PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Han A-R, Kim M-S, Jeong YH, Lee SK, Seo E-K. Cyclooxygenase-2 inhibitory phenylbutenoids from the rhizomes of Zingiber cassumunar. Chem Pharm Bull. 2005;53(11):1466–8.PubMedCrossRefGoogle Scholar
  40. 40.
    Kaewchoothong A, Tewtrakul S, Panichayupakaranant P. Inhibitory effect of phenylbutanoid-richZingiber cassumunar extracts on nitric oxide production by murine macrophage-like RAW264.7 cells. Phytother Res. 2012;26(12):1789–92.PubMedCrossRefGoogle Scholar
  41. 41.
    Masuda T, Jitoe A. Phenylbutenoid monomers from the rhizomes of Zingiber cassumunar. Phytochemistry. 1995;39(2):459–61. doi: 10.1016/0031-9422(94)00883-U.CrossRefGoogle Scholar
  42. 42.
    Jeenapongsa R, Yoovathaworn K, Sriwatanakul KM, Pongprayoon U, Sriwatanakul K. Anti-inflammatory activity of (E)-1-(3,4-dimethoxyphenyl) butadiene from Zingiber cassumunar Roxb. J Ethnopharmacol. 2003;87(2–3):143–8. doi: 10.1016/S0378-8741(03)00098-9.PubMedCrossRefGoogle Scholar
  43. 43.
    Ozaki Y, Kawahara N, Harada M. Anti-inflammatory effect of Zingiber cassumunar Roxb. and its active principles. Chem. Pharm Bull (Tokyo). 1991;39(9):2353–9.CrossRefGoogle Scholar
  44. 44.
    Panthong A, Kanjanapothi D, Niwatananun V, Tuntiwachwuttikul P, Reutrakul V. Anti-inflammatory activity of compounds isolated from Zingiber cassumunar. Planta Med. 1990;56(6):655.CrossRefGoogle Scholar
  45. 45.
    Silva SMLB, Carla RC, Fook MVL, Raposo CMO, Carvalho LH, Canedo EL. Application of infrared spectroscopy to analysis of chitosan/clay nanocomposites. In: Theophanides T, editor. Infrared spectroscopy - materials science, engineering and technology. Croatia: InTech; 2012. p. 43–62.Google Scholar
  46. 46.
    Anuar NK, Wui WT, Ghodgaonkar DK, Taib MN. Characterization of hydroxypropylmethylcellulose films using microwave non-destructive testing technique. J Pharm Biomed Anal. 2007;43(2):549–57. doi: 10.1016/j.jpba.2006.08.014.PubMedCrossRefGoogle Scholar
  47. 47.
    Larsson M, Viridén A, Stading M, Larsson A. The influence of HPMC substitution pattern on solid-state properties. Carbohydr Polym. 2010;82(4):1074–81. doi: 10.1016/j.carbpol.2010.06.030.CrossRefGoogle Scholar
  48. 48.
    Dhanikula A, Panchagnula R. Development and characterization of biodegradable chitosan films for local delivery of paclitaxel. AAPS J. 2004;6(3):88–99. doi: 10.1208/aapsj060327.PubMedCentralCrossRefGoogle Scholar
  49. 49.
    Clark GL, Smith AF. X-ray diffraction studies of chitin, chitosan, and derivatives. J Phys Chem. 1935;40(7):863–79. doi: 10.1021/j150376a001.CrossRefGoogle Scholar
  50. 50.
    Abdelaziz M, Ghannam MM. Influence of titanium chloride addition on the optical and dielectric properties of PVA films. Phys B. 2010;405(3):958–64. doi: 10.1016/j.physb.2009.10.030.CrossRefGoogle Scholar
  51. 51.
    Moon TY, Cooper RH. Method of preventing surface cracking of portland cement mortar and concrete containing a film forming polymer modifier. US. 1979.Google Scholar
  52. 52.
    Guo R, Du X, Zhang R, Deng L, Dong A, Zhang J. Bioadhesive film formed from a novel organic–inorganic hybrid gel for transdermal drug delivery system. Eur J Pharm Biopharm. 2011;79(3):574–83. doi: 10.1016/j.ejpb.2011.06.006.PubMedCrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2014

Authors and Affiliations

  • Jirapornchai Suksaeree
    • 1
    • 2
    Email author
  • Chaowalit Monton
    • 2
  • Fameera Madaka
    • 2
  • Tun Chusut
    • 2
  • Worawan Saingam
    • 2
  • Wiwat Pichayakorn
    • 3
    • 4
  • Prapaporn Boonme
    • 3
  1. 1.Department of Pharmaceutical Chemistry, Faculty of PharmacyRangsit UniversityMuangThailand
  2. 2.Sino-Thai Traditional Medicine Research Center (Cooperation between Rangsit University, Harbin Institute of Technology, and Heilongjiang University of Chinese Medicine), Faculty of PharmacyRangsit UniversityMuangThailand
  3. 3.Department of Pharmaceutical Technology, Faculty of Pharmaceutical SciencesPrince of Songkla UniversityHat-YaiThailand
  4. 4.Medical Products Innovations from Polymers in Clinical Use Research UnitPrince of Songkla UniversityHat-YaiThailand

Personalised recommendations