AAPS PharmSciTech

, Volume 15, Issue 6, pp 1498–1508 | Cite as

Characterization and Evaluation of 5-Fluorouracil-Loaded Solid Lipid Nanoparticles Prepared via a Temperature-Modulated Solidification Technique

  • Meghavi N. Patel
  • Sushant Lakkadwala
  • Mohamed S. Majrad
  • Elisha R. Injeti
  • Steven M. Gollmer
  • Zahoor A. Shah
  • Sai Hanuman Sagar Boddu
  • Jerry Nesamony
Research Article Theme: Translational Application of Nano Delivery Systems: Emerging Cancer Therapy
Part of the following topical collections:
  1. Theme: Translational Application of Nano Delivery Systems: Emerging Cancer Therapy

Abstract

The aim of this research was to advance solid lipid nanoparticle (SLN) preparation methodology by preparing glyceryl monostearate (GMS) nanoparticles using a temperature-modulated solidification process. The technique was reproducible and prepared nanoparticles without the need of organic solvents. An anticancer agent, 5-fluorouracil (5-FU), was incorporated in the SLNs. The SLNs were characterized by particle size analysis, zeta potential analysis, differential scanning calorimetry (DSC), infrared spectroscopy, atomic force microscopy (AFM), transmission electron microscopy (TEM), drug encapsulation efficiency, in vitro drug release, and in vitro cell viability studies. Particle size of the SLN dispersion was below 100 nm, and that of redispersed lyophilizates was ~500 nm. DSC and infrared spectroscopy suggested that the degree of crystallinity did not decrease appreciably when compared to GMS. TEM and AFM images showed well-defined spherical to oval particles. The drug encapsulation efficiency was found to be approximately 46%. In vitro drug release studies showed that 80% of the encapsulated drug was released within 1 h. In vitro cell cultures were biocompatible with blank SLNs but demonstrated concentration-dependent changes in cell viability to 5-FU-loaded SLNs. The 5-FU-loaded SLNs can potentially be utilized in an anticancer drug delivery system.

KEY WORDS

atomic force microscopy calorimetry (DSC) FTIR particle size solid lipid nanoparticles 

Notes

Acknowledgments

This research was performed with support from start-up funds made available by the Department of Pharmacy Practice at the University of Toledo College of Pharmacy and Pharmaceutical Sciences. We are grateful to Dr. Joseph Lawrence, Center for Sensor and Materials Characterization, University of Toledo College of Engineering, for his assistance during the TEM work. We thank Ms. Charisse Montgomerry, Scientific Editor and College Communicator, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, for her review and comments.

Conflict of Interest

The authors report no conflict of interest.

References

  1. 1.
    del Pozo-Rodriguez A, Delgado D, Gascon A, Solinis M. Lipid nanoparticles as drug/gene delivery systems to the retina. J Ocul Pharmacol Ther. 2013;29(2):173–88.PubMedCrossRefGoogle Scholar
  2. 2.
    Genc L, Dikmen G, Guney G. Formulation of nano drug delivery systems. J Mater Sci Eng A. 2011;1(1):132–7.Google Scholar
  3. 3.
    Pradhan M, Singh D, Singh M. Novel colloidal carriers for psoriasis: current issues, mechanistic insight and novel delivery approaches. J Control Release. 2013;170(3):380–95.PubMedCrossRefGoogle Scholar
  4. 4.
    Mehnert W, Mäder K. Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev. 2001;47(2–3):165–96.PubMedCrossRefGoogle Scholar
  5. 5.
    Basu B, Garala K, Bhalodia R, Joshi B, Mehta K. Solid lipid nanoparticles: a promising tool for drug delivery system. J Pharm Res. 2010;3(1):84–92.Google Scholar
  6. 6.
    Alukda D, Sturgis T, Youan B-BC. Formulation of tenofovir-loaded functionalized solid lipid nanoparticles intended for HIV prevention. J Pharm Sci. 2011;100(8):3345–56.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Qi J, Lu Y, Wu W. Absorption, disposition and pharmacokinetics of solid lipid nanoparticles. Curr Drug Metab. 2012;13(4):418–28.PubMedCrossRefGoogle Scholar
  8. 8.
    Li XW, Lin XH, Zheng LQ, Yu L, Lv FF, Zhang QQ, et al. Effect of poly(ethylene glycol) stearate on the phase behavior of monocaprate/Tween80/water system and characterization of poly(ethylene glycol) stearate-modified solid lipid nanoparticles. Colloids Surf A Physicochem Eng Asp. 2008;317(1–3):352–9.CrossRefGoogle Scholar
  9. 9.
    Siekmann B, Westesen K. Investigations on solid lipid nanoparticles prepared by precipitation in o/w emulsions. Eur J Pharm Biopharm. 1996;42(2):104–9.Google Scholar
  10. 10.
    Reddy LH, Sharma RK, Chuttani K, Mishra AK, Murthy RSR. Influence of administration route on tumor uptake and biodistribution of etoposide loaded solid lipid nanoparticles in Dalton’s lymphoma tumor bearing mice. J Control Release. 2005;105(3):185–98.CrossRefGoogle Scholar
  11. 11.
    Cavalli R, Caputo O, Gasco MR. Preparation and characterization of solid lipid nanospheres containing paclitaxel. Eur J Pharm Sci. 2000;10(4):305–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Serpe L, Catalano MG, Cavalli R, Ugazio E, Bosco O, Canaparo R, et al. Cytotoxicity of anticancer drugs incorporated in solid lipid nanoparticles on HT-29 colorectal cancer cell line. Eur J Pharm Biopharm. 2004;58(3):673–80.PubMedCrossRefGoogle Scholar
  13. 13.
    Howlader N NA, Krapcho M, Neyman N, Aminou R, Waldron W, Altekruse SF, Kosary CL, Ruhl J, Tatalovich Z, Cho H, Mariotto A, Eisner MP, Lewis DR, Chen HS, Feuer EJ, Cronin KA, Edwards BK (Eds). SEER cancer statistics review 1975–2008. Bethesda, MD: National Cancer Institute, NIH, DHHS.Google Scholar
  14. 14.
    Cancer Trends Progress Report—2009/2010 update. Bethesda, MD: National Cancer Institute, NIH, DHHS, April 2010.Google Scholar
  15. 15.
    Carethers JM, Smith EJ, Behling CA, Nguyen L, Tajima A, Doctolero RT, et al. Use of 5-fluorouracil and survival in patients with microsatellite-unstable colorectal cancer. Gastroenterology. 2004;126(2):394–401.PubMedCrossRefGoogle Scholar
  16. 16.
    Sander CA, Pfeiffer C, Kligman AM, Plewig G. Chemotherapy for disseminated actinic keratoses with 5-fluorouracil and isotretinoin. J Am Acad Dermatol. 1997;36(2):236–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Longley DB, Johnston PG. 5-Fluorouracil. Apoptosis, cell signaling, and human diseases. 2007:263–78.Google Scholar
  18. 18.
    Diasio RB, Harris BE. Clinical pharmacology of 5-fluorouracil. Clin Pharmacokinet. 1989;16(4):215–37.PubMedCrossRefGoogle Scholar
  19. 19.
    Prince LM. Microemulsions versus micelles. J Colloid Interface Sci. 1975;52(1):182–8.CrossRefGoogle Scholar
  20. 20.
    Zhang J, Fan Y, Smith E. Experimental design for the optimization of lipid nanoparticles. J Pharm Sci. 2009;98(5):1813–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Izutsu K, Kojima S. Excipient crystallinity and its protein-structure-stabilizing effect during freeze-drying. J Pharm Pharmacol. 2002;54(8):1033–9. Epub 2002/08/28.PubMedCrossRefGoogle Scholar
  22. 22.
    Shahgaldian P, Gualbert J, Aissa K, Coleman AW. A study of the freeze-drying conditions of calixarene based solid lipid nanoparticles. Eur J Pharm Biopharm. 2003;55(2):181–4. Epub 2003/03/15.PubMedCrossRefGoogle Scholar
  23. 23.
    Schwarz C, Mehnert W. Freeze-drying of drug-free and drug-loaded solid lipid nanoparticles (SLN). Int J Pharm. 1997;157(2):171–9. Epub 1999/09/09.PubMedCrossRefGoogle Scholar
  24. 24.
    Heiati H, Tawashi R, Phillips NC. Drug retention and stability of solid lipid nanoparticles containing azidothymidine palmitate after autoclaving, storage and lyophilization. J Microencapsul. 1998;15(2):173–84.PubMedCrossRefGoogle Scholar
  25. 25.
    Validation of analytical procedures: text and methodology Q2(R1). ICH Harmonised Tripartite Guideline: International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use; 1994.Google Scholar
  26. 26.
    Singh S, Dobhal AK, Jain A, Pandit JK, Chakraborty S. Formulation and evaluation of solid lipid nanoparticles of a water soluble drug: zidovudine. Chem Pharm Bull. 2010;58(5):650–5.PubMedCrossRefGoogle Scholar
  27. 27.
    Schubert MA, Mueller-Goymann CC. Characterisation of surface-modified solid lipid nanoparticles (SLN): influence of lecithin and nonionic emulsifier. Eur J Pharm Biopharm. 2005;61(1–2):77–86.PubMedCrossRefGoogle Scholar
  28. 28.
    Cavalli R, Caputo O, Gasco MR. Solid lipospheres of doxorubicin and idarubicin. Int J Pharm. 1993;89(1):R9–R12.CrossRefGoogle Scholar
  29. 29.
    Olbrich C, Gessner A, Kayser O, Muller RH. Lipid-drug-conjugate (LDC) nanoparticles as novel carrier system for the hydrophilic antitrypanosomal drug diminazenediaceturate. J Drug Target. 2002;10(5):387–96.PubMedCrossRefGoogle Scholar
  30. 30.
    Wong HL, Bendayan R, Rauth AM, Wu XY. Development of solid lipid nanoparticles containing ionically complexed chemotherapeutic drugs and chemosensitizers. J Pharm Sci. 2004;93(8):1993–2008.PubMedCrossRefGoogle Scholar
  31. 31.
    Wang J-X, Sun X, Zhang Z-R. Enhanced brain targeting by synthesis of 3′,5′-dioctanoyl-5-fluoro-2′-deoxyuridine and incorporation into solid lipid nanoparticles. Eur J Pharm Biopharm. 2002;54(3):285–90.PubMedCrossRefGoogle Scholar
  32. 32.
    Heydenreich A, Westmeier R, Pedersen N, Poulsen H, Kristensen H. Preparation and purification of cationic solid lipid nanospheres—effects on particle size, physical stability and cell toxicity. Int J Pharm. 2003;254(1):83–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Yang SC, Zhu JB. Preparation and characterization of camptothecin solid lipid nanoparticles. Drug Dev Ind Pharm. 2002;28(3):265–74.PubMedCrossRefGoogle Scholar
  34. 34.
    del Pozo-Rodriguez A, Solinis MA, Gascon AR, Pedraz JL. Short- and long-term stability study of lyophilized solid lipid nanoparticles for gene therapy. Eur J Pharm Biopharm. 2009;71(2):181–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Asasutjarit R, Lorenzen S-I, Sirivichayakul S, Ruxrungtham K, Ruktanonchai U, Ritthidej GC. Effect of solid lipid nanoparticles formulation compositions on their size, zeta potential and potential for in vitro pHIS-HIV-hugag transfection. Pharm Res. 2007;24(6):1098–107.PubMedCrossRefGoogle Scholar
  36. 36.
    de Faria TJ, Souza-Silva E, de Oliveira DT, Senna Elenara L, Tonussi CR. Evaluation of the pro-inflammatory potential of nanostructured drug carriers in knee-joints of rats: effect on nociception, edema, and cell migration. J Pharm Sci. 2009;98(12):4844–51.PubMedCrossRefGoogle Scholar
  37. 37.
    Li Z, Yu L, Zheng L, Geng F. Studies on crystallinity state of puerarin loaded solid lipid nanoparticles prepared by double emulsion method. J Therm Anal Calorim. 2010;99(2):689–93.CrossRefGoogle Scholar
  38. 38.
    Yassin Alaa Eldeen B, Anwer Md K, Mowafy Hammam A, El-Bagory Ibrahim M, Bayomi Mohsen A, Alsarra Ibrahim A. Optimization of 5-fluorouracil solid-lipid nanoparticles: a preliminary study to treat colon cancer. Int J Med Sci. 2010;7(6):398–408.PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Sussich F, Bortoluzzi S, Cesàro A. Trehalose dehydration under confined conditions. Thermochim Acta. 2002;391(1):137–50.CrossRefGoogle Scholar
  40. 40.
    Simperler A, Kornherr A, Chopra R, Bonnet PA, Jones W, Motherwell WDS, et al. Glass transition temperature of glucose, sucrose, and trehalose: an experimental and in silico study. J Phys Chem B. 2006;110(39):19678–84.PubMedCrossRefGoogle Scholar
  41. 41.
    Wartewig S, Neubert RHH. Pharmaceutical applications of Mid-IR and Raman spectroscopy. Adv Drug Deliv Rev. 2005;57(8):1144–70.PubMedCrossRefGoogle Scholar
  42. 42.
    Lin X, Li X, Zheng L, Yu L, Zhang Q, Liu W. Preparation and characterization of monocaprate nanostructured lipid carriers. Colloids Surf A Physicochem Eng Asp. 2007;311(1–3):106–11.CrossRefGoogle Scholar
  43. 43.
    Liu D, Ge Y, Tang Y, Yuan Y, Zhang Q, Li R, et al. Solid lipid nanoparticles for transdermal delivery of diclofenac sodium: preparation, characterization and in vitro studies. J Microencapsul. 2010;27(8):726–34.PubMedCrossRefGoogle Scholar
  44. 44.
    Li XM, Xu YL, Chen GG, Wei P, Ping QN. PLGA nanoparticles for the oral delivery of 5-fluorouracil using high pressure homogenization-emulsification as the preparation method and in vitro/in vivo studies. Drug Dev Ind Pharm. 2008;34(1):107–15.PubMedCrossRefGoogle Scholar
  45. 45.
    Jain SK, Chaurasiya A, Gupta Y, Jain A, Dagur P, Joshi B, et al. Development and characterization of 5-FU bearing ferritin appended solid lipid nanoparticles for tumour targeting. J Microencapsul. 2008;25(5):289–97.PubMedCrossRefGoogle Scholar
  46. 46.
    Glavas-Dodov M, Fredro-Kumbaradzi E, Goracinova K, Simonoska M, Calis S, Trajkovic-Jolevska S, et al. The effects of lyophilization on the stability of liposomes containing 5-FU. Int J Pharm. 2005;291(1):79–86.PubMedCrossRefGoogle Scholar
  47. 47.
    Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986;46(12, Pt. 1):6387–92.PubMedGoogle Scholar
  48. 48.
    Gokce EH, Sandri G, Bonferoni MC, Rossi S, Ferrari F, Gueneri T, et al. Cyclosporine A loaded SLNs: evaluation of cellular uptake and corneal cytotoxicity. Int J Pharm. 2008;364(1):76–86.PubMedCrossRefGoogle Scholar
  49. 49.
    Olbrich C, Kayser O, Mueller RH. Enzymatic degradation of Dynasan 114 SLN—effect of surfactants and particle size. J Nanoparticle Res. 2002;4(1/2):121–9.CrossRefGoogle Scholar
  50. 50.
    Olbrich C, Kayser O, Muller RH. Lipase degradation of Dynasan 114 and 116 solid lipid nanoparticles (SLN)—effect of surfactants, storage time and crystallinity. Int J Pharm. 2002;237(1–2):119–28.PubMedCrossRefGoogle Scholar
  51. 51.
    Nomura DK, Lombardi DP, Chang JW, Niessen S, Ward AM, Long JZ, et al. Monoacylglycerol lipase exerts dual control over endocannabinoid and fatty acid pathways to support prostate cancer. Chem Biol. 2011;18(7):846–56. Cambridge, MA, United States.PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Nomura DK, Long JZ, Niessen S, Hoover HS, Ng S-W, Cravatt BF. Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis. Cell. 2010;140(1):49–61. Cambridge, MA, United States.PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Eytan GD, Regev R, Oren G, Hurwitz CD, Assaraf YG. Efficiency of P-glycoprotein-mediated exclusion of rhodamine dyes from multidrug-resistant cells is determined by their passive transmembrane movement rate. Eur J Biochem. 1997;248(1):104–12.PubMedCrossRefGoogle Scholar
  54. 54.
    Guo H, Hao R, Wei Y, Sun D, Sun S, Zhang Z. Optimization of electrotransfection conditions of mammalian cells with different biological features. J Membr Biol. 2012;245(12):789–95.PubMedCrossRefGoogle Scholar
  55. 55.
    Olbrich C, Gessner A, Schroder W, Kayser O, Muller RH. Lipid-drug conjugate nanoparticles of the hydrophilic drug diminazene-cytotoxicity testing and mouse serum adsorption. J Control Release Off J Control Release Soc. 2004;96(3):425–35.CrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2014

Authors and Affiliations

  • Meghavi N. Patel
    • 1
  • Sushant Lakkadwala
    • 1
  • Mohamed S. Majrad
    • 1
  • Elisha R. Injeti
    • 2
  • Steven M. Gollmer
    • 3
  • Zahoor A. Shah
    • 4
  • Sai Hanuman Sagar Boddu
    • 1
  • Jerry Nesamony
    • 1
  1. 1.Department of Pharmacy Practice, College of Pharmacy and Pharmaceutical SciencesUniversity of ToledoToledoUSA
  2. 2.Department of Pharmaceutical Sciences, School of PharmacyCedarville UniversityCedarvilleUSA
  3. 3.Department of Science and Mathematics, College of Arts and SciencesCedarville UniversityCedarvilleUSA
  4. 4.Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical SciencesUniversity of ToledoToledoUSA

Personalised recommendations