Skip to main content

Advertisement

Log in

A New Lipid-Based Nano Formulation of Vinorelbine

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Vinorelbine (VLB) is a semi-synthetic Vinca alkaloid which is currently used in treatment of different cancer types mainly advanced breast cancer (ABC) and advanced/metastatic non-small cell lung cancer (NSCLC). However, its marketed formulation has been reported to have serious side effects, such as granulocytopenia, which is the major dose-limiting toxicity. Other unwanted effects include venous discoloration and phlebitis proximal to the site of injection, as well as localized rashes and urticaria, blistering, and skin sloughing. Our long-term aim in synthesizing a novel nanomicellar vinorelbine formulation is to reduce or even eliminate these side effects and increase drug activity by formulating the drug in a lipid-based system as a nanomedicine targeted to the site of action. To this end, the purpose of this study was to prepare, characterize, and determine the in vitro efficacy of vinorelbine-loaded sterically stabilized, biocompatible, and biodegradable phospholipid nanomicelles (SSM; size, ∼15 nm). Our results indicated that vinorelbine incorporate at high quantities and within the interface between the core and palisade sections of the micelles. Incorporation ratio of drug within sterically stabilized micelles increased as the total amount of drug in the system increased, and no drug particles were formed at the highest drug concentrations tested. The nanomicellar formulation of vinorelbine was ∼6.7-fold more potent than vinorelbine dissolved in DMSO on MCF-7 cell line. Collectively, these data indicate that vinorelbine-loaded SSM can be developed as a new, safe, stable, and effective nanomedicine for the treatment of breast and lung cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

REFERENCES

  1. Krikorian A, Breillout F. Vinorelbine (Navelbine ® 1). A new semisynthetic Vinca alkaloid. Onkologie. 1991;4:7–12.

    Article  Google Scholar 

  2. Zhou XJ, Placidi M, Rahmani R. Uptake and metabolism of Vinca alkaloids by freshly isolated human hepatocytes in suspension. Anticancer Res. 1994;14(3A):1017–22.

    PubMed  CAS  Google Scholar 

  3. Etievant C, Barret JM, Kruczynski A, Perrin D, Hill BT. Vinflunine (20′,20′-difluoro-3′,4′-dihydrovinorelbine), a novel Vinca alkaloid, which participates in P-glycoprotein (Pgp)-mediated multidrug resistance in vivo and in vitro. Investig New Drugs. 1998;16(1):3–17.

    Article  CAS  Google Scholar 

  4. Duflos A, Jacquesy JC, Kruczynski A, Etievant C, Barret JM, Hill BT, et al. Extending the scope of Vinca alkaloids with superacid chemistry. Clin Cancer Res. 1999;5:3794S-S.

    Google Scholar 

  5. Johnson SA, Harper P, Hortobagyi GN, Pouillart P. Vinorelbine: an overview. Cancer Treat Rev. 1996;22(2):127–42.

    Article  PubMed  CAS  Google Scholar 

  6. Koukoulitsa C, Kyrikou I, Demetzos C, Mavromoustakos T. The role of the anticancer drug vinorelbine in lipid bilayers using differential scanning calorimetry and molecular modeling. Chem Phys Lipids. 2006;144(1):85–95.

    Article  PubMed  CAS  Google Scholar 

  7. Cragg GM, Newman DJ. Plants as a source of anti-cancer agents. J Ethnopharmacol. 2005;100(1–2):72–9.

    Article  PubMed  CAS  Google Scholar 

  8. Semple SC, Leone R, Wang J, Leng EC, Klimuk SK, Eisenhardt ML, et al. Optimization and characterization of a sphingomyelin/cholesterol liposome formulation of vinorelbine with promising antitumor activity. J Pharm Sci. 2005;94(5):1024–38.

    Article  PubMed  CAS  Google Scholar 

  9. Toso C, Lindley C. Vinorelbine: a novel Vinca alkaloid. Am J Health Syst Pharm AJHP Off J Am Soc Health Syst Pharm. 1995;52(12):1287–304. quizz 340–1.

    CAS  Google Scholar 

  10. Yoh K, Niho S, Goto K, Ohmatsu H, Kubota K, Kakinuma R, et al. Randomized trial of drip infusion versus bolus injection of vinorelbine for the control of local venous toxicity. Lung Cancer. 2007;55(3):337–41.

    Article  PubMed  Google Scholar 

  11. Li C, Cui J, Wang C, Zhang L, Xiu X, Li Y, et al. Encapsulation of vinorelbine into cholesterol-polyethylene glycol coated vesicles: drug loading and pharmacokinetic studies. J Pharm Pharmacol. 2011;63(3):376–84.

    Article  PubMed  CAS  Google Scholar 

  12. Drummond DC, Noble CO, Guo Z, Hayes ME, Park JW, Ou CJ, et al. Improved pharmacokinetics and efficacy of a highly stable nanoliposomal vinorelbine. J Pharmacol Exp Ther. 2009;328(1):321–30.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986;46:6387–92.

    PubMed  CAS  Google Scholar 

  14. Okouneva T, Hill BT, Wilson L, Jordan MA. The effects of vinflunine, vinorelbine, and vinblastine on centromere dynamics. Mol Cancer Ther. 2003;2(5):427–36.

    PubMed  CAS  Google Scholar 

  15. Jordan A, Hadfield JA, Lawrence NJ, McGown AT. Tubulin as a target for anticancer drugs: agents which interact with the mitotic spindle. Med Res Rev. 1998;18(4):259–96.

    Article  PubMed  CAS  Google Scholar 

  16. Georgiadis MS, Russell EK, Gazdar AF, Johnson BE. Paclitaxel cytotoxicity against human lung cancer cell lines increases with prolonged exposure durations. Clin Cancer Res. 1997;3(3):449–54.

    PubMed  CAS  Google Scholar 

  17. Horton JK, Houghton PJ, Houghton JA. Relationships between tumor responsiveness, vincristine pharmacokinetics and arrest of mitosis in human-tumor xenografts. Biochem Pharmacol. 1988;37(20):3995–4000.

    Article  PubMed  CAS  Google Scholar 

  18. Burris HA, Hanauske AR, Johnson RK, Marshall MH, Kuhn JG, Hilsenbeck SG, et al. Activity of topotecan, a new topoisomerase-I inhibitor, against human tumor colony-forming-units in vitro. J Natl Cancer Inst. 1992;84(23):1816–20.

    Article  PubMed  CAS  Google Scholar 

  19. Vasey PA, Kaye SB, Morrison R, Twelves C, Wilson P, Duncan R, et al. Phase I clinical and pharmacokinetic study of PK1 N-(2-hydroxypropyl) methacrylamide copolymer doxorubicin: first member of a new class of chemotherapeutic agents—drug-polymer conjugates. Clin Cancer Res. 1999;5(1):83–94.

    PubMed  CAS  Google Scholar 

  20. Drummond DC, Meyer O, Hong KL, Kirpotin DB, Papahadjopoulos D. Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol Rev. 1999;51(4):691–743.

    PubMed  CAS  Google Scholar 

  21. Krishnadas A, Rubinstein I, Onyuksel H. Sterically stabilized phospholipid mixed micelles: in vitro evaluation as a novel carrier for water-insoluble drugs. Pharm Res. 2003;20(2):297–302.

    Article  PubMed  CAS  Google Scholar 

  22. Onyuksel H, Jeon E, Rubinstein I. Nanomicellar paclitaxel increases cytotoxicity of multidrug resistant breast cancer cells. Cancer Lett. 2009;274(2):327–30.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Dagar A, Kuzmis A, Rubinstein I, Sekosan M, Onyuksel H. VIP-targeted cytotoxic nanomedicine for breast cancer. Drug Deliv Transl Res. 2012;2(6):454–62.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Dagar S, Krishnadas A, Rubinstein I, Blend MJ, Onyuksel H. VIP grafted sterically stabilized liposomes for targeted imaging of breast cancer: in vivo studies. J Control Release. 2003;91(1–2):123–33.

    Article  PubMed  CAS  Google Scholar 

  25. Sethi V, Rubinstein I, Kuzmis A, Kastrissios H, Artwohl J, Onyuksel H. Novel, biocompatible, and disease modifying VIP nanomedicine for rheumatoid arthritis. Mol Pharm. 2013;10(2):728–38.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Ashok B, Arleth L, Hjelm RP, Rubinstein I, Onyuksel H. In vitro characterization of PEGylated phospholipid micelles for improved drug solubilization: effects of PEG chain length and PC incorporation. J Pharm Sci. 2004;93(10):2476–87.

    Article  PubMed  CAS  Google Scholar 

  27. Lim SB, Rubinstein I, Onyuksel H. Freeze drying of peptide drugs self-associated with long-circulating, biocompatible and biodegradable sterically stabilized phospholipid nanomicelles. Int J Pharm. 2008;356(1–2):345–50.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Chauhan VP, Stylianopoulos T, Martin JD, Popovic Z, Chen O, Kamoun WS, et al. Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. Nat Nanotechnol. 2012;7(6):383–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Onyuksel H, Mohanty PS, Rubinstein I. VIP-grafted sterically stabilized phospholipid nanomicellar 17-allylamino-17-demethoxy geldanamycin: a novel targeted nanomedicine for breast cancer. Int J Pharm. 2009;365(1–2):157–61.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Vukovic L, Khatib FA, Drake SP, Madriaga A, Brandenburg KS, Kral P, et al. Structure and dynamics of highly PEG-ylated sterically stabilized micelles in aqueous media. J Am Chem Soc. 2011;133(34):13481–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Banerjee A, Onyuksel H. Human pancreatic polypeptide in a phospholipid-based micellar formulation. Pharm Res. 2012;29(6):1698–711.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Markovsky E, Koroukhov N, Golomb G. Additive-free albumin nanoparticles of alendronate for attenuating inflammation through monocyte inhibition. Nanomedicine. 2007;2(4):545–53.

    Article  PubMed  CAS  Google Scholar 

  33. Debal V, Morjani H, Millot JM, Angiboust JF, Gourdier B, Manfait M. Determination of vinorelbine (Navelbine) in tumor-cells by high-performance liquid-chromatography. J Chromatogr Biomed Appl. 1992;581(1):93–9.

    Article  CAS  Google Scholar 

  34. Jehl F, Debs J, Herlin C, Quoix E, Gallion C, Monteil H. Determination of navelbine and desacetylnavelbine in biological fluids by high-performance liquid chromatography. J Chromatogr. 1990;525(1):225–33.

    Article  PubMed  CAS  Google Scholar 

  35. Cho YW, Lee J, Lee SC, Huh KM, Park K. Hydrotropic agents for study of in vitro paclitaxel release from polymeric micelles. J Control Release. 2004;97(2):249–57.

    Article  PubMed  CAS  Google Scholar 

  36. Michalowski CB, Guterres SS, Dalla Costa T. Microdialysis for evaluating the entrapment and release of a lipophilic drug from nanoparticles. J Pharm Biomed Anal. 2004;35(5):1093–100.

    Article  PubMed  CAS  Google Scholar 

  37. Allahverdiyev A, Duran N, Ozguven M, Koltas S. Antiviral activity of the volatile oils of Melissa officinalis L. against Herpes simplex virus type-2. Phytomedicine. 2004;11(7–8):657–61.

    Article  PubMed  CAS  Google Scholar 

  38. Davydov M, Volkov S, Polotsky B, Gerasimov S, Machaladze Z, Allahverdiyev A, et al. Mediastinal lymphadenectomy improves survival in surgically treated patients with non-small cell lung cancer. Int J Cancer. 2002;414–5.

  39. Sugin Z, Yuksel N, Baykara T. Preparation and characterization of polymeric micelles for solubilization of poorly soluble anticancer drugs. Eur J Pharm Biopharm. 2006;64(3):261–8.

    Article  Google Scholar 

  40. Torchilin VP. Structure and design of polymeric surfactant-based drug delivery systems. J Control Release. 2001;73(2–3):137–72.

    Article  PubMed  CAS  Google Scholar 

  41. Cesur H, Rubinstein I, Pai A, Onyuksel H. Self-associated indisulam in phospholipid-based nanomicelles: a potential nanomedicine for cancer. Nanomedicine. 2009;5(2):178–83.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Koo OM, Rubinstein I, Onyuksel H. Actively targeted low-dose camptothecin as a safe, long-acting, disease-modifying nanomedicine for rheumatoid arthritis. Pharm Res. 2011;28(4):776–87.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Lv Q, Yu A, Xi Y, Li H, Song Z, Cui J, et al. Development and evaluation of penciclovir-loaded solid lipid nanoparticles for topical delivery. Int J Pharm. 2009;372(1–2):191–8.

    Article  PubMed  CAS  Google Scholar 

  44. Sullivan CO, Birkinshaw C. In vitro degradation of insulin-loaded poly (n-butylcyanoacrylate) nanoparticles. Biomaterials. 2004;25(18):4375–82.

    Article  PubMed  CAS  Google Scholar 

  45. Holdgate GA, Ward WHJ. Measurements of binding thermodynamics in drug discovery. Drug Discov Today. 2005;10(22):1543–50.

    Article  PubMed  CAS  Google Scholar 

  46. Kastantin M, Ananthanarayanan B, Karmali P, Ruoslahti E, Tirrell M. Effect of the lipid chain melting transition on the stability of DSPE-PEG (2000) micelles. Langmuir. 2009;25(13):7279–86.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Maswadeh H, Demetzos C, Daliani I, Kyrikou I, Mavromoustakos T, Tsortos A, et al. A molecular basis explanation of the dynamic and thermal effects of vinblastine sulfate upon dipalmitoylphosphatidylcholine bilayer membranes. Biochim Biophys Acta-Biomembr. 2002;1567(1–2):49–55.

    Article  CAS  Google Scholar 

  48. Liu XM, Wang LG, Kreis W, Budman DR, Adams LM. Differential effect of vinorelbine versus paclitaxel on ERK2 kinase activity during apoptosis in MCF-7 cells. Br J Cancer. 2001;85:1403–11.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. Taylor RL, Williams DM, Craven PC, Graybill JR, Drutz DJ, Magee WE. Amphotericin-B in liposomes—a novel therapy for histoplasmosis. Am Rev Respir Dis. 1982;125(5):610–1.

    PubMed  CAS  Google Scholar 

  50. Rex S, Zuckermann MJ, Lafleur M, Silvius JR. Experimental and Monte Carlo simulation studies of the thermodynamics of polyethyleneglycol chains grafted to lipid bilayers. Biophys J. 1998;75(6):2900–14.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Rubinstein I, Soos I, Onyuksel H. Intracellular delivery of VIP-grafted sterically stabilized phospholipid mixed nanomicelles in human breast cancer cells. Chem Biol Interact. 2008;171(2):190–4.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported, in part, by NIH grant CA121797. Most part of this investigation was conducted in a facility constructed with support from Research Facilities Improvement Program Grant Number CO6RR15482 from the National Center for Research Resources, NIH. Also, the authors would like to thank Dr. Antonina Kuzmis for her very precious advices and assistance during the experimentations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hayat Önyüksel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahadori, F., Topçu, G., Eroğlu, M.S. et al. A New Lipid-Based Nano Formulation of Vinorelbine. AAPS PharmSciTech 15, 1138–1148 (2014). https://doi.org/10.1208/s12249-014-0146-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-014-0146-3

KEY WORDS

Navigation