Advertisement

AAPS PharmSciTech

, Volume 15, Issue 3, pp 709–721 | Cite as

Nanodrug Delivery Systems: A Promising Technology for Detection, Diagnosis, and Treatment of Cancer

  • Anish Babu
  • Amanda K. Templeton
  • Anupama Munshi
  • Rajagopal RameshEmail author
Review Article Theme: Translational Application of Nano Delivery Systems: Emerging Cancer Therapy
Part of the following topical collections:
  1. Theme: Translational Application of Nano Delivery Systems: Emerging Cancer Therapy

Abstract

Nanotechnology has enabled the development of novel therapeutic and diagnostic strategies, such as advances in targeted drug delivery systems, versatile molecular imaging modalities, stimulus responsive components for fabrication, and potential theranostic agents in cancer therapy. Nanoparticle modifications such as conjugation with polyethylene glycol have been used to increase the duration of nanoparticles in blood circulation and reduce renal clearance rates. Such modifications to nanoparticle fabrication are the initial steps toward clinical translation of nanoparticles. Additionally, the development of targeted drug delivery systems has substantially contributed to the therapeutic efficacy of anti-cancer drugs and cancer gene therapies compared with nontargeted conventional delivery systems. Although multifunctional nanoparticles offer numerous advantages, their complex nature imparts challenges in reproducibility and concerns of toxicity. A thorough understanding of the biological behavior of nanoparticle systems is strongly warranted prior to testing such systems in a clinical setting. Translation of novel nanodrug delivery systems from the bench to the bedside will require a collective approach. The present review focuses on recent research efforts citing relevant examples of advanced nanodrug delivery and imaging systems developed for cancer therapy. Additionally, this review highlights the newest technologies such as microfluidics and biomimetics that can aid in the development and speedy translation of nanodrug delivery systems to the clinic.

KEY WORDS

cancer therapy liposome nanodrug delivery systems nanomedicine polymer nanoparticles 

REFERENCES

  1. 1.
    Juliano R. Nanomedicine: is the wave cresting? Nat Rev Drug Discov. 2013;12(3):171–2. doi: 10.1038/nrd3958.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Bourzac K. Nanotechnology: carrying drugs. Nature. 2012;491(7425):S58–60.PubMedCrossRefGoogle Scholar
  3. 3.
    Cho K, Wang X, Nie S, Chen ZG, Shin DM. Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res Off J Am Assoc Cancer Res. 2008;14(5):1310–6. doi: 10.1158/1078-0432.CCR-07-1441.CrossRefGoogle Scholar
  4. 4.
    De Jong WH, Borm PJ. Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine. 2008;3(2):133–49.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Venkatraman SS, Ma LL, Natarajan JV, Chattopadhyay S. Polymer- and liposome-based nanoparticles in targeted drug delivery. Front Biosci. 2010;2:801–14.CrossRefGoogle Scholar
  6. 6.
    Davis ME, Chen ZG, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov. 2008;7(9):771–82. doi: 10.1038/nrd2614.PubMedCrossRefGoogle Scholar
  7. 7.
    Desai N. Challenges in development of nanoparticle-based therapeutics. AAPS J. 2012;14(2):282–95. doi: 10.1208/s12248-012-9339-4.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Mudshinge SR, Deore AB, Patil S, Bhalgat CM. Nanoparticles: emerging carriers for drug delivery. Saudi Pharm J SPJ Off Publ Saudi Pharm Soc. 2011;19(3):129–41. doi: 10.1016/j.jsps.2011.04.001.Google Scholar
  9. 9.
    Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev. 2013;65(1):36–48. doi: 10.1016/j.addr.2012.09.037.PubMedCrossRefGoogle Scholar
  10. 10.
    James ND, Coker RJ, Tomlinson D, Harris JR, Gompels M, Pinching AJ, et al. Liposomal doxorubicin (Doxil): an effective new treatment for Kaposi's sarcoma in AIDS. Clin Oncol. 1994;6(5):294–6.CrossRefGoogle Scholar
  11. 11.
    Andreopoulou E, Gaiotti D, Kim E, Downey A, Mirchandani D, Hamilton A, et al. Pegylated liposomal doxorubicin HCL (PLD; Caelyx/Doxil): experience with long-term maintenance in responding patients with recurrent epithelial ovarian cancer. Ann Oncol Off J Eur Soc Med Oncol ESMO. 2007;18(4):716–21. doi: 10.1093/annonc/mdl484.CrossRefGoogle Scholar
  12. 12.
    Zervas K, Dimopoulos MA, Hatzicharissi E, Anagnostopoulos A, Papaioannou M, Mitsouli C, et al. Primary treatment of multiple myeloma with thalidomide, vincristine, liposomal doxorubicin and dexamethasone (T-VAD doxil): a phase II multicenter study. Ann Oncol Off J Eur Soc Med Oncol ESMO. 2004;15(1):134–8.CrossRefGoogle Scholar
  13. 13.
    Batist G, Barton J, Chaikin P, Swenson C, Welles L. Myocet (liposome-encapsulated doxorubicin citrate): a new approach in breast cancer therapy. Expert Opin Pharmacother. 2002;3(12):1739–51. doi: 10.1517/14656566.3.12.1739.PubMedCrossRefGoogle Scholar
  14. 14.
    Liu D, He C, Wang AZ, Lin W. Application of liposomal technologies for delivery of platinum analogs in oncology. Int J Nanomedicine. 2013;8:3309–19. doi: 10.2147/IJN.S38354.PubMedCentralPubMedGoogle Scholar
  15. 15.
    Al-Jamal WT, Kostarelos K. Liposomes: from a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine. Acc Chem Res. 2011;44(10):1094–104. doi: 10.1021/ar200105p.PubMedCrossRefGoogle Scholar
  16. 16.
    Liao Z, Wang H, Lv R, Zhao P, Sun X, Wang S, et al. Polymeric liposomes-coated superparamagnetic iron oxide nanoparticles as contrast agent for targeted magnetic resonance imaging of cancer cells. Langmuir: the ACS journal of surfaces and colloids. 2011. doi: 10.1021/la1050157.Google Scholar
  17. 17.
    Poulose AC, Veeranarayanan S, Mohamed MS, Raveendran S, Nagaoka Y, Yoshida Y, et al. PEG coated biocompatible cadmium chalcogenide quantum dots for targeted imaging of cancer cells. J Fluoresc. 2012;22(3):931–44. doi: 10.1007/s10895-011-1032-y.PubMedCrossRefGoogle Scholar
  18. 18.
    Mukthavaram R, Wrasidlo W, Hall D, Kesari S, Makale M. Assembly and targeting of liposomal nanoparticles encapsulating quantum dots. Bioconjug Chem. 2011;22(8):1638–44. doi: 10.1021/bc200201e.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Yang C, Ding N, Xu Y, Qu X, Zhang J, Zhao C, et al. Folate receptor-targeted quantum dot liposomes as fluorescence probes. J Drug Target. 2009;17(7):502–11. doi: 10.1080/10611860903013248.PubMedCrossRefGoogle Scholar
  20. 20.
    Kono K, Torikoshi Y, Mitsutomi M, Itoh T, Emi N, Yanagie H, et al. Novel gene delivery systems: complexes of fusigenic polymer-modified liposomes and lipoplexes. Gene Ther. 2001;8(1):5–12. doi: 10.1038/sj.gt.3301365.PubMedCrossRefGoogle Scholar
  21. 21.
    Dass CR, Choong PF. Selective gene delivery for cancer therapy using cationic liposomes: in vivo proof of applicability. J Control Release Off J Control Release Soc. 2006;113(2):155–63. doi: 10.1016/j.jconrel.2006.04.009.CrossRefGoogle Scholar
  22. 22.
    Ruponen M, Honkakoski P, Ronkko S, Pelkonen J, Tammi M, Urtti A. Extracellular and intracellular barriers in non-viral gene delivery. J Control Release Off J Control Release Soc. 2003;93(2):213–7.CrossRefGoogle Scholar
  23. 23.
    Yang SY, Zheng Y, Chen JY, Zhang QY, Zhao D, Han DE, et al. Comprehensive study of cationic liposomes composed of DC-Chol and cholesterol with different mole ratios for gene transfection. Colloids Surf B,Biointerfaces. 2013;101:6–13. doi: 10.1016/j.colsurfb.2012.05.032.PubMedCrossRefGoogle Scholar
  24. 24.
    Ito I, Ji L, Tanaka F, Saito Y, Gopalan B, Branch CD, et al. Liposomal vector mediated delivery of the 3p FUS1 gene demonstrates potent antitumor activity against human lung cancer in vivo. Cancer Gene Ther. 2004;11(11):733–9. doi: 10.1038/sj.cgt.7700756.PubMedCrossRefGoogle Scholar
  25. 25.
    Lu C, Stewart DJ, Lee JJ, Ji L, Ramesh R, Jayachandran G, et al. Phase I clinical trial of systemically administered TUSC2(FUS1)-nanoparticles mediating functional gene transfer in humans. PloS One. 2012;7(4):e34833. doi: 10.1371/journal.pone.0034833.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Suzuki R, Namai E, Oda Y, Nishiie N, Otake S, Koshima R, et al. Cancer gene therapy by IL-12 gene delivery using liposomal bubbles and tumoral ultrasound exposure. J Control Release Official J Control Release Soc. 2010;142(2):245–50. doi: 10.1016/j.jconrel.2009.10.027.CrossRefGoogle Scholar
  27. 27.
    Negishi Y, Hamano N, Tsunoda Y, Oda Y, Choijamts B, Endo-Takahashi Y, et al. AG73-modified bubble liposomes for targeted ultrasound imaging of tumor neovasculature. Biomaterials. 2013;34(2):501–7. doi: 10.1016/j.biomaterials.2012.09.056.PubMedCrossRefGoogle Scholar
  28. 28.
    Liu J, Ma H, Wei T, Liang XJ. CO2 gas induced drug release from pH-sensitive liposome to circumvent doxorubicin resistant cells. Chem Commun. 2012;48(40):4869–71. doi: 10.1039/c2cc31697h.CrossRefGoogle Scholar
  29. 29.
    Karanth H, Murthy RS. pH-sensitive liposomes—principle and application in cancer therapy. J Pharm Pharmacol. 2007;59(4):469–83. doi: 10.1211/jpp.59.4.0001.PubMedCrossRefGoogle Scholar
  30. 30.
    Gao ZG, Lee DH, Kim DI, Bae YH. Doxorubicin loaded pH-sensitive micelle targeting acidic extracellular pH of human ovarian A2780 tumor in mice. J Drug Target. 2005;13(7):391–7. doi: 10.1080/10611860500376741.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Mo R, Sun Q, Li N, Zhang C. Intracellular delivery and antitumor effects of pH-sensitive liposomes based on zwitterionic oligopeptide lipids. Biomaterials. 2013;34(11):2773–86. doi: 10.1016/j.biomaterials.2013.01.030.PubMedCrossRefGoogle Scholar
  32. 32.
    Banerjee S, Sen K, Pal TK, Guha SK. Poly(styrene-co-maleic acid)-based pH-sensitive liposomes mediate cytosolic delivery of drugs for enhanced cancer chemotherapy. Int J Pharm. 2012;436(1–2):786–97. doi: 10.1016/j.ijpharm.2012.07.059.PubMedCrossRefGoogle Scholar
  33. 33.
    Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater. 2013;12(11):991–1003. doi: 10.1038/nmat3776.PubMedCrossRefGoogle Scholar
  34. 34.
    Parveen S, Sahoo SK. Polymeric nanoparticles for cancer therapy. J Drug Target. 2008;16(2):108–23. doi: 10.1080/10611860701794353.PubMedCrossRefGoogle Scholar
  35. 35.
    Mora-Huertas CE, Fessi H, Elaissari A. Polymer-based nanocapsules for drug delivery. Int J Pharm. 2010;385(1–2):113–42. doi: 10.1016/j.ijpharm.2009.10.018.PubMedCrossRefGoogle Scholar
  36. 36.
    Petros RA, DeSimone JM. Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov. 2010;9(8):615–27. doi: 10.1038/nrd2591.PubMedCrossRefGoogle Scholar
  37. 37.
    Pridgen EM, Langer R, Farokhzad OC. Biodegradable, polymeric nanoparticle delivery systems for cancer therapy. Nanomedicine (Lond). 2007;2(5):669–80. doi: 10.2217/17435889.2.5.669.CrossRefGoogle Scholar
  38. 38.
    Stinchcombe TE. Nanoparticle albumin-bound paclitaxel: a novel Cremphor-EL-free formulation of paclitaxel. Nanomedicine (Lond). 2007;2(4):415–23. doi: 10.2217/17435889.2.4.415.CrossRefGoogle Scholar
  39. 39.
    Dosio F, Arpicco S, Brusa P, Stella B, Cattel L. Poly(ethylene glycol)-human serum albumin-paclitaxel conjugates: preparation, characterization and pharmacokinetics. J Control Release Off J Control Release Soc. 2001;76(1–2):107–17.CrossRefGoogle Scholar
  40. 40.
    Schluep T, Hwang J, Cheng J, Heidel JD, Bartlett DW, Hollister B, et al. Preclinical efficacy of the camptothecin-polymer conjugate IT-101 in multiple cancer models. Clin Cancer Res Off J Am Assoc Cancer Res. 2006;12(5):1606–14. doi: 10.1158/1078-0432.CCR-05-1566.CrossRefGoogle Scholar
  41. 41.
    Gaur S, Chen L, Yen T, Wang Y, Zhou B, Davis M, et al. Preclinical study of the cyclodextrin-polymer conjugate of camptothecin CRLX101 for the treatment of gastric cancer. Nanomedicine Nanotechnol Biol Med. 2012;8(5):721–30. doi: 10.1016/j.nano.2011.09.007.CrossRefGoogle Scholar
  42. 42.
    Ding HM, Ma YQ. Controlling cellular uptake of nanoparticles with pH-sensitive polymers. Sci Rep. 2013;3:2804. doi: 10.1038/srep02804.PubMedCentralPubMedGoogle Scholar
  43. 43.
    Vivek R, Nipun Babu V, Thangam R, Subramanian KS, Kannan S. pH-responsive drug delivery of chitosan nanoparticles as Tamoxifen carriers for effective anti-tumor activity in breast cancer cells. Colloids Surf B Biointerfaces. 2013;111C:117–23. doi: 10.1016/j.colsurfb.2013.05.018.CrossRefGoogle Scholar
  44. 44.
    Kemp MM, Linhardt RJ. Heparin-based nanoparticles. Wiley Interdiscip Rev Nanomedicine Nanobiotechnol. 2010;2(1):77–87. doi: 10.1002/wnan.68.CrossRefGoogle Scholar
  45. 45.
    Wang Y, Xin D, Liu K, Zhu M, Xiang J. Heparin-paclitaxel conjugates as drug delivery system: synthesis, self-assembly property, drug release, and antitumor activity. Bioconjug Chem. 2009;20(12):2214–21. doi: 10.1021/bc8003809.PubMedCrossRefGoogle Scholar
  46. 46.
    Wang Y, Wang Y, Xiang J, Yao K. Target-specific cellular uptake of taxol-loaded heparin-PEG-folate nanoparticles. Biomacromolecules. 2010;11(12):3531–8. doi: 10.1021/bm101013s.PubMedCrossRefGoogle Scholar
  47. 47.
    Tan Q, Tang H, Hu J, Hu Y, Zhou X, Tao Y, et al. Controlled release of chitosan/heparin nanoparticle-delivered VEGF enhances regeneration of decellularized tissue-engineered scaffolds. Int J Nanomedicine. 2011;6:929–42. doi: 10.2147/IJN.S18753.PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Kemp MM, Kumar A, Mousa S, Dyskin E, Yalcin M, Ajayan P, et al. Gold and silver nanoparticles conjugated with heparin derivative possess anti-angiogenesis properties. Nanotechnology. 2009;20(45):455104. doi: 10.1088/0957-4484/20/45/455104.PubMedCrossRefGoogle Scholar
  49. 49.
    Yuk SH, Oh KS, Cho SH, Lee BS, Kim SY, Kwak BK, et al. Glycol chitosan/heparin immobilized iron oxide nanoparticles with a tumor-targeting characteristic for magnetic resonance imaging. Biomacromolecules. 2011;12(6):2335–43. doi: 10.1021/bm200413a.PubMedCrossRefGoogle Scholar
  50. 50.
    Li Li KMH, Yong-Kyu L, So Yeon K. Biofunctional self-assembled nanoparticles of folate–PEG–heparin/PBLA copolymers for targeted delivery of doxorubicin. J Mater Chem. 2011;21:15288–97.CrossRefGoogle Scholar
  51. 51.
    Li L, Huh KM, Leeb YK, Kim SY. Design of a multifunctional heparin-based nanoparticle system for anticancer drug delivery. Macromol Res. 2010;18:153–61.CrossRefGoogle Scholar
  52. 52.
    She W, Li N, Luo K, Guo C, Wang G, Geng Y, et al. Dendronized heparin-doxorubicin conjugate based nanoparticle as pH-responsive drug delivery system for cancer therapy. Biomaterials. 2013;34(9):2252–64. doi: 10.1016/j.biomaterials.2012.12.017.PubMedCrossRefGoogle Scholar
  53. 53.
    Nie S. Understanding and overcoming major barriers in cancer nanomedicine. Nanomedicine (Lond). 2010;5(4):523–8. doi: 10.2217/nnm.10.23.CrossRefGoogle Scholar
  54. 54.
    Yinting Chen GL, Liao C, Wang W, Zeng L, Qian C, Huang K, et al. Characterization of polyethylene glycol-grafted polyethylenimine and superparamagnetic iron oxide nanoparticles (PEG-g-PEI-SPION) as an MRI-visible vector for siRNA delivery in gastric cancer in vitro and in vivo. J Gastroenterol. 2013;48:809–21.PubMedCrossRefGoogle Scholar
  55. 55.
    Shen Y, Tang H, Zhan Y, Van Kirk EA, Murdoch WJ. Degradable poly(beta-amino ester) nanoparticles for cancer cytoplasmic drug delivery. Nanomedicine Nanotechnol Biol Med. 2009;5(2):192–201. doi: 10.1016/j.nano.2008.09.003.CrossRefGoogle Scholar
  56. 56.
    Kaul G, Amiji M. Biodistribution and targeting potential of poly(ethylene glycol)-modified gelatin nanoparticles in subcutaneous murine tumor model. J Drug Target. 2004;12(9–10):585–91. doi: 10.1080/10611860400013451.PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    van Vlerken LE, Vyas TK, Amiji MM. Poly(ethylene glycol)-modified nanocarriers for tumor-targeted and intracellular delivery. Pharm Res. 2007;24(8):1405–14. doi: 10.1007/s11095-007-9284-6.PubMedCrossRefGoogle Scholar
  58. 58.
    Choi KY, Min KH, Yoon HY, Kim K, Park JH, Kwon IC, et al. PEGylation of hyaluronic acid nanoparticles improves tumor targetability in vivo. Biomaterials. 2011;32(7):1880–9. doi: 10.1016/j.biomaterials.2010.11.010.PubMedCrossRefGoogle Scholar
  59. 59.
    Dubey N, Varshney R, Shukla J, Ganeshpurkar A, Hazari PP, Bandopadhaya GP, et al. Synthesis and evaluation of biodegradable PCL/PEG nanoparticles for neuroendocrine tumor targeted delivery of somatostatin analog. Drug Deliv. 2012;19(3):132–42. doi: 10.3109/10717544.2012.657718.PubMedCrossRefGoogle Scholar
  60. 60.
    Kawano K, Maitani Y. Effects of polyethylene glycol spacer length and ligand density on folate receptor targeting of liposomal Doxorubicin in vitro. J Drug Deliv. 2011;2011:160967. doi: 10.1155/2011/160967.PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Chen J, Li S, Shen Q, He H, Zhang Y. Enhanced cellular uptake of folic acid-conjugated PLGA-PEG nanoparticles loaded with vincristine sulfate in human breast cancer. Drug Dev Ind Pharm. 2011;37(11):1339–46. doi: 10.3109/03639045.2011.575162.PubMedCrossRefGoogle Scholar
  62. 62.
    Dixit V, Van den Bossche J, Sherman DM, Thompson DH, Andres RP. Synthesis and grafting of thioctic acid-PEG-folate conjugates onto Au nanoparticles for selective targeting of folate receptor-positive tumor cells. Bioconjugate chemistry. 2006;17(3):603–9. doi: 10.1021/bc050335b.PubMedCrossRefGoogle Scholar
  63. 63.
    Hong M, Zhu S, Jiang Y, Tang G, Sun C, Fang C, et al. Novel anti-tumor strategy: PEG-hydroxycamptothecin conjugate loaded transferrin-PEG-nanoparticles. J Control Release Off J Control Release Soc. 2010;141(1):22–9. doi: 10.1016/j.jconrel.2009.08.024.CrossRefGoogle Scholar
  64. 64.
    Kukowska-Latallo JF, Candido KA, Cao Z, Nigavekar SS, Majoros IJ, Thomas TP, et al. Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res. 2005;65(12):5317–24. doi: 10.1158/0008-5472.CAN-04-3921.PubMedCrossRefGoogle Scholar
  65. 65.
    Beech JR, Shin SJ, Smith JA, Kelly KA. Mechanisms for targeted delivery of nanoparticles in cancer. Curr Pharm Des. 2013;19(37):6560–74.PubMedCrossRefGoogle Scholar
  66. 66.
    Hughes BJ, Kennel S, Lee R, Huang L. Monoclonal antibody targeting of liposomes to mouse lung in vivo. Cancer Res. 1989;49(22):6214–20.PubMedGoogle Scholar
  67. 67.
    Ahmad I, Allen TM. Antibody-mediated specific binding and cytotoxicity of liposome-entrapped doxorubicin to lung cancer cells in vitro. Cancer Res. 1992;52(17):4817–20.PubMedGoogle Scholar
  68. 68.
    Lukyanov AN, Elbayoumi TA, Chakilam AR, Torchilin VP. Tumor-targeted liposomes: doxorubicin-loaded long-circulating liposomes modified with anti-cancer antibody. J Control Release Off J Control Release Soc. 2004;100(1):135–44. doi: 10.1016/j.jconrel.2004.08.007.CrossRefGoogle Scholar
  69. 69.
    Park JW, Hong K, Kirpotin DB, Colbern G, Shalaby R, Baselga J, et al. Anti-HER2 immunoliposomes: enhanced efficacy attributable to targeted delivery. Clin Cancer Res Off J Am Assoc Cancer Res. 2002;8(4):1172–81.Google Scholar
  70. 70.
    Maclean A, Symonds G, Ward R. Immunoliposomes as targeted delivery vehicles for cancer therapeutics (Review). Int J Oncol. 1997;11(2):325–32.PubMedGoogle Scholar
  71. 71.
    Sofou S, Enmon R, Palm S, Kappel B, Zanzonico P, McDevitt MR, et al. Large anti-HER2/neu liposomes for potential targeted intraperitoneal therapy of micrometastatic cancer. J Liposome Res. 2010;20(4):330–40. doi: 10.3109/08982100903544185.PubMedCentralPubMedCrossRefGoogle Scholar
  72. 72.
    Mamot C, Ritschard R, Wicki A, Stehle G, Dieterle T, Bubendorf L, et al. Tolerability, safety, pharmacokinetics, and efficacy of doxorubicin-loaded anti-EGFR immunoliposomes in advanced solid tumours: a phase 1 dose-escalation study. Lancet Oncol. 2012;13(12):1234–41. doi: 10.1016/S1470-2045(12)70476-X.PubMedCrossRefGoogle Scholar
  73. 73.
    Allen TM, Mumbengegwi DR, Charrois GJ. Anti-CD19-targeted liposomal doxorubicin improves the therapeutic efficacy in murine B-cell lymphoma and ameliorates the toxicity of liposomes with varying drug release rates. Clin Cancer Res Off J Am Assoc Cancer Res. 2005;11(9):3567–73. doi: 10.1158/1078-0432.CCR-04-2517.CrossRefGoogle Scholar
  74. 74.
    Hamaguchi T, Matsumura Y, Nakanishi Y, Muro K, Yamada Y, Shimada Y, et al. Antitumor effect of MCC-465, pegylated liposomal doxorubicin tagged with newly developed monoclonal antibody GAH, in colorectal cancer xenografts. Cancer Sci. 2004;95(7):608–13.PubMedCrossRefGoogle Scholar
  75. 75.
    Sapra P, Moase EH, Ma J, Allen TM. Improved therapeutic responses in a xenograft model of human B lymphoma (Namalwa) for liposomal vincristine versus liposomal doxorubicin targeted via anti-CD19 IgG2a or Fab′ fragments. Clin Cancer Res Off J Am Assoc Cancer Res. 2004;10(3):1100–11.CrossRefGoogle Scholar
  76. 76.
    Hatakeyama H, Akita H, Ishida E, Hashimoto K, Kobayashi H, Aoki T, et al. Tumor targeting of doxorubicin by anti-MT1-MMP antibody-modified PEG liposomes. Int J Pharm. 2007;342(1–2):194–200. doi: 10.1016/j.ijpharm.2007.04.037.PubMedCrossRefGoogle Scholar
  77. 77.
    Gao J, Chen H, Yu Y, Song J, Song H, Su X, et al. Inhibition of hepatocellular carcinoma growth using immunoliposomes for co-delivery of adriamycin and ribonucleotide reductase M2 siRNA. Biomaterials. 2013;34(38):10084–98. doi: 10.1016/j.biomaterials.2013.08.088.PubMedCrossRefGoogle Scholar
  78. 78.
    Revets H, De Baetselier P, Muyldermans S. Nanobodies as novel agents for cancer therapy. Expert Opin Biol Ther. 2005;5(1):111–24. doi: 10.1517/14712598.5.1.111.PubMedCrossRefGoogle Scholar
  79. 79.
    Vaneycken I, D'Huyvetter M, Hernot S, De Vos J, Xavier C, Devoogdt N, et al. Immuno-imaging using nanobodies. Curr Opin Biotechnol. 2011;22(6):877–81. doi: 10.1016/j.copbio.2011.06.009.PubMedCrossRefGoogle Scholar
  80. 80.
    Vaneycken I, Devoogdt N, Van Gassen N, Vincke C, Xavier C, Wernery U, et al. Preclinical screening of anti-HER2 nanobodies for molecular imaging of breast cancer. FASEB J Off Publ Fed Am Soc Exp Biol. 2011;25(7):2433–46. doi: 10.1096/fj.10-180331.Google Scholar
  81. 81.
    Roovers RC, Laeremans T, Huang L, De Taeye S, Verkleij AJ, Revets H, et al. Efficient inhibition of EGFR signaling and of tumour growth by antagonistic anti-EFGR Nanobodies. Cancer Immunol Immunother CII. 2007;56(3):303–17. doi: 10.1007/s00262-006-0180-4.PubMedCrossRefGoogle Scholar
  82. 82.
    Reyes-Reyes EM, Teng Y, Bates PJ. A new paradigm for aptamer therapeutic AS1411 action: uptake by macropinocytosis and its stimulation by a nucleolin-dependent mechanism. Cancer Res. 2010;70(21):8617–29. doi: 10.1158/0008-5472.CAN-10-0920.PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    Aravind A, Jeyamohan P, Nair R, Veeranarayanan S, Nagaoka Y, Yoshida Y, et al. AS1411 aptamer tagged PLGA-lecithin-PEG nanoparticles for tumor cell targeting and drug delivery. Biotechnol Bioeng. 2012;109(11):2920–31. doi: 10.1002/bit.24558.PubMedCrossRefGoogle Scholar
  84. 84.
    Mann AP, Bhavane RC, Somasunderam A, Liz Montalvo-Ortiz B, Ghaghada KB, Volk D, et al. Thioaptamer conjugated liposomes for tumor vasculature targeting. Oncotarget. 2011;2(4):298–304.PubMedCentralPubMedGoogle Scholar
  85. 85.
    Sundaram P, Kurniawan H, Byrne ME, Wower J. Therapeutic RNA aptamers in clinical trials. Eur J Pharm Sci Off J Eur Fed Pharm Sci. 2013;48(1–2):259–71. doi: 10.1016/j.ejps.2012.10.014.Google Scholar
  86. 86.
    Camp ER, Wang C, Little EC, Watson PM, Pirollo KF, Rait A, et al. Transferrin receptor targeting nanomedicine delivering wild-type p53 gene sensitizes pancreatic cancer to gemcitabine therapy. Cancer Gene Ther. 2013;20(4):222–8. doi: 10.1038/cgt.2013.9.PubMedCentralPubMedCrossRefGoogle Scholar
  87. 87.
    Senzer N, Nemunaitis J, Nemunaitis D, Bedell C, Edelman G, Barve M, et al. Phase I study of a systemically delivered p53 nanoparticle in advanced solid tumors. Mol Ther J Am Soc Gene Ther. 2013;21(5):1096–103. doi: 10.1038/mt.2013.32.CrossRefGoogle Scholar
  88. 88.
    Alexis F, Basto P, Levy-Nissenbaum E, Radovic-Moreno AF, Zhang L, Pridgen E, et al. HER-2-targeted nanoparticle-affibody bioconjugates for cancer therapy. ChemMedChem. 2008;3(12):1839–43. doi: 10.1002/cmdc.200800122.PubMedCentralPubMedCrossRefGoogle Scholar
  89. 89.
    Han HD, Mangala LS, Lee JW, Shahzad MM, Kim HS, Shen D, et al. Targeted gene silencing using RGD-labeled chitosan nanoparticles. Clin Cancer Res Off J Am Assoc Cancer Res. 2010;16(15):3910–22. doi: 10.1158/1078-0432.CCR-10-0005.CrossRefGoogle Scholar
  90. 90.
    Danhier F, Le Breton A, Preat V. RGD-based strategies to target alpha(v) beta(3) integrin in cancer therapy and diagnosis. Mol Pharm. 2012;9(11):2961–73. doi: 10.1021/mp3002733.PubMedCrossRefGoogle Scholar
  91. 91.
    Kumar A, Ma H, Zhang X, Huang K, Jin S, Liu J, et al. Gold nanoparticles functionalized with therapeutic and targeted peptides for cancer treatment. Biomaterials. 2012;33(4):1180–9. doi: 10.1016/j.biomaterials.2011.10.058.PubMedCrossRefGoogle Scholar
  92. 92.
    Agemy L, Friedmann-Morvinski D, Kotamraju VR, Roth L, Sugahara KN, Girard OM, et al. Targeted nanoparticle enhanced proapoptotic peptide as potential therapy for glioblastoma. Proc Natl Acad Sci U S A. 2011;108(42):17450–5. doi: 10.1073/pnas.1114518108.PubMedCentralPubMedCrossRefGoogle Scholar
  93. 93.
    Agemy L, Kotamraju VR, Friedmann-Morvinski D, Sharma S, Sugahara KN, Ruoslahti E. Proapoptotic peptide-mediated cancer therapy targeted to cell surface p32. Mol Ther J Am Soc Gene Ther. 2013. doi: 10.1038/mt.2013.191.Google Scholar
  94. 94.
    Kelly KA, Bardeesy N, Anbazhagan R, Gurumurthy S, Berger J, Alencar H, et al. Targeted nanoparticles for imaging incipient pancreatic ductal adenocarcinoma. PLoS Med. 2008;5(4):e85. doi: 10.1371/journal.pmed.0050085.PubMedCentralPubMedCrossRefGoogle Scholar
  95. 95.
    Yang HM, Park CW, Woo MA, Kim MI, Jo YM, Park HG, et al. HER2/neu antibody conjugated poly(amino acid)-coated iron oxide nanoparticles for breast cancer MR imaging. Biomacromolecules. 2010. doi: 10.1021/bm100560m.Google Scholar
  96. 96.
    Oghabian MA, Jeddi-Tehrani M, Zolfaghari A, Shamsipour F, Khoei S, Amanpour S. Detectability of Her2 positive tumors using monoclonal antibody conjugated iron oxide nanoparticles in MRI. J Nanosci Nanotechnol. 2011;11(6):5340–4.PubMedCrossRefGoogle Scholar
  97. 97.
    Minati Satpathy WQ, Rafal Zielinski, Liya Wang, Lei Xi, Jacek Capala, Andrew Wang, et. al. Multimodality imaging of ovarian cancer using HER2 affibody conjugated nanoparticles. Cancer Res. 2013;73:Suppl 1.Google Scholar
  98. 98.
    Zhang MZ, Yu RN, Chen J, Ma ZY, Zhao YD. Targeted quantum dots fluorescence probes functionalized with aptamer and peptide for transferrin receptor on tumor cells. Nanotechnology. 2012;23(48):485104. doi: 10.1088/0957-4484/23/48/485104.PubMedCrossRefGoogle Scholar
  99. 99.
    Cai W, Chen X. Preparation of peptide-conjugated quantum dots for tumor vasculature-targeted imaging. Nat Protoc. 2008;3(1):89–96. doi: 10.1038/nprot.2007.478.PubMedCrossRefGoogle Scholar
  100. 100.
    Torchilin VP. Multifunctional nanocarriers. Adv Drug Deliv Rev. 2006;58(14):1532–55. doi: 10.1016/j.addr.2006.09.009.PubMedCrossRefGoogle Scholar
  101. 101.
    Ventola CL. The nanomedicine revolution: part 2: current and future clinical applications. P T Peer Rev J Formul Manag. 2012;37(10):582–91.Google Scholar
  102. 102.
    Eliasof S, Lazarus D, Peters CG, Case RI, Cole RO, Hwang J, et al. Correlating preclinical animal studies and human clinical trials of a multifunctional, polymeric nanoparticle. Proc Natl Acad Sci U S A. 2013;110(37):15127–32. doi: 10.1073/pnas.1309566110.PubMedCentralPubMedCrossRefGoogle Scholar
  103. 103.
    Sahoo B, Devi KS, Banerjee R, Maiti TK, Pramanik P, Dhara D. Thermal and pH responsive polymer-tethered multifunctional magnetic nanoparticles for targeted delivery of anticancer drug. ACS Appl Mater Interfaces. 2013;5(9):3884–93. doi: 10.1021/am400572b.PubMedCrossRefGoogle Scholar
  104. 104.
    Cheng Z, Al Zaki A, Hui JZ, Muzykantov VR, Tsourkas A. Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities. Science. 2012;338(6109):903–10. doi: 10.1126/science.1226338.PubMedCentralPubMedCrossRefGoogle Scholar
  105. 105.
    Nagahiro I, Mora BN, Boasquevisque CH, Scheule RK, Patterson GA. Toxicity of cationic liposome-DNA complex in lung isografts. Transplantation. 2000;69(9):1802–5.PubMedCrossRefGoogle Scholar
  106. 106.
    Lv H, Zhang S, Wang B, Cui S, Yan J. Toxicity of cationic lipids and cationic polymers in gene delivery. J Control Release Off J Control Release Soc. 2006;114(1):100–9. doi: 10.1016/j.jconrel.2006.04.014.CrossRefGoogle Scholar
  107. 107.
    Miller K, Erez R, Segal E, Shabat D, Satchi-Fainaro R. Targeting bone metastases with a bispecific anticancer and antiangiogenic polymer-alendronate-taxane conjugate. Angew Chem. 2009;48(16):2949–54. doi: 10.1002/anie.200805133.CrossRefGoogle Scholar
  108. 108.
    Fiering J, Mescher MJ, Leary Swan EE, Holmboe ME, Murphy BA, Chen Z, et al. Local drug delivery with a self-contained, programmable, microfluidic system. Biomed Microdevices. 2009;11(3):571–8. doi: 10.1007/s10544-008-9265-5.PubMedCentralPubMedCrossRefGoogle Scholar
  109. 109.
    Valencia PM, Farokhzad OC, Karnik R, Langer R. Microfluidic technologies for accelerating the clinical translation of nanoparticles. Nat Nanotechnol. 2012;7(10):623–9. doi: 10.1038/nnano.2012.168.PubMedCentralPubMedCrossRefGoogle Scholar
  110. 110.
    Majedi FS, Hasani-Sadrabadi MM, Emami SH, Shokrgozar MA, VanDersarl JJ, Dashtimoghadam E, et al. Microfluidic assisted self-assembly of chitosan based nanoparticles as drug delivery agents. Lab Chip. 2013;13(2):204–7. doi: 10.1039/c2lc41045a.PubMedCrossRefGoogle Scholar
  111. 111.
    Hu CM, Zhang L, Aryal S, Cheung C, Fang RH, Zhang L. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc Natl Acad Sci U S A. 2011;108(27):10980–5. doi: 10.1073/pnas.1106634108.PubMedCentralPubMedCrossRefGoogle Scholar
  112. 112.
    Zhang J, Gong M, Yang S, Gong YK. Crosslinked biomimetic random copolymer micelles as potential anti-cancer drug delivery vehicle. J Control Release Off J Control Release Soc. 2011;152 Suppl 1:e23–5. doi: 10.1016/j.jconrel.2011.08.099.CrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2014

Authors and Affiliations

  • Anish Babu
    • 1
    • 3
  • Amanda K. Templeton
    • 1
    • 3
  • Anupama Munshi
    • 2
    • 3
  • Rajagopal Ramesh
    • 1
    • 3
    • 4
    Email author
  1. 1.Department of PathologyUniversity of Oklahoma Health Sciences CenterOklahoma CityUSA
  2. 2.Department of Radiation OncologyUniversity of Oklahoma Health Sciences CenterOklahoma CityUSA
  3. 3.Peggy and Charles Stephenson Cancer CenterUniversity of Oklahoma Health Sciences CenterOklahoma CityUSA
  4. 4.The Graduate Program in Biomedical SciencesUniversity of Oklahoma Health Sciences CenterOklahoma CityUSA

Personalised recommendations