AAPS PharmSciTech

, Volume 14, Issue 2, pp 585–592

Chitosan-Modified PLGA Nanoparticles with Versatile Surface for Improved Drug Delivery

Research Article

Abstract

Shortage of functional groups on surface of poly(lactide-co-glycolide) (PLGA)-based drug delivery carriers always hampers its wide applications such as passive targeting and conjugation with targeting molecules. In this research, PLGA nanoparticles were modified with chitosan through physical adsorption and chemical binding methods. The surface charges were regulated by altering pH value in chitosan solutions. After the introduction of chitosan, zeta potential of the PLGA nanoparticle surface changed from negative charge to positive one, making the drug carriers more affinity to cancer cells. Functional groups were compared between PLGA nanoparticles and chitosan-modified PLGA nanoparticles. Amine groups were exhibited on PLGA nanoparticle surface after the chitosan modification as confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The modified nanoparticles showed an initial burst release followed by a moderate and sustained release profile. Higher percentage of drugs from cumulative release can be achieved in the same prolonged time range. Therefore, PLGA nanoparticles modified by chitosan showed versatility of surface and a possible improvement in the efficacy of current PLGA-based drug delivery system.

KEY WORDS

chitosan drug delivery system nanoparticles PLGA versatility 

REFERENCES

  1. 1.
    Dev A, Binulal NS, Anitha A, Nair SV, Furuike T, Tamura H, et al. Preparation of poly(lactic acid)/chitosan nanoparticles for anti-HIV drug delivery applications. Carbohydr Polym. 2010;80(3):833–8. doi:10.1016/j.carbpol.2009.12.040.CrossRefGoogle Scholar
  2. 2.
    Hood E, Simone E, Wattamwar P, Dziubla T, Muzykantov V. Nanocarriers for vascular delivery of antioxidants. Nanomedicine. 2011;6(7):1257–72. doi:10.2217/nnm.11.92.CrossRefPubMedGoogle Scholar
  3. 3.
    Jeon O, Lim H-W, Lee M, Song SJ, Kim B-S. Poly(l-lactide-co-glycolide) nanospheres conjugated with a nuclear localization signal for delivery of plasmid DNA. J Drug Target. 2007;15(3):190–8. doi:10.1080/10611860601143479.CrossRefPubMedGoogle Scholar
  4. 4.
    Parveen S, Sahoo SK. Polymeric nanoparticles for cancer therapy. J Drug Target. 2008;16(2):108–23. doi:10.1080/10611860701794353.CrossRefPubMedGoogle Scholar
  5. 5.
    Li P, Wang Y, Zeng F, Chen L, Peng Z, Kong LX. Synthesis and characterization of folate conjugated chitosan and cellular uptake of its nanoparticles in HT-29 cells. Carbohydr Res. 2011;346(6):801–6. doi:10.1016/j.carres.2011.01.027.CrossRefPubMedGoogle Scholar
  6. 6.
    Shen H, Hu X, Yang F, Bei J, Wang S. Combining oxygen plasma treatment with anchorage of cationized gelatin for enhancing cell affinity of poly(lactide-co-glycolide). Biomaterials. 2007;28(29):4219–30. doi:10.1016/j.biomaterials.2007.06.004.CrossRefPubMedGoogle Scholar
  7. 7.
    Shen H, Hu XX, Bei JZ, Wang SG. The immobilization of basic fibroblast growth factor on plasma-treated poly(lactide-co-glycolide). Biomaterials. 2008;29(15):2388–99. doi:10.1016/j.biomaterials.2008.02.008.CrossRefPubMedGoogle Scholar
  8. 8.
    Yang J, Wan YQ, Yang JL, Bei JZ, Wang SG. Plasma-treated, collagen-anchored polylactone: Its cell affinity evaluation under shear or shear-free conditions. J Biomed Mater Res A. 2003;67A(4):1139–47. doi:10.1002/jbm.a.10034.CrossRefGoogle Scholar
  9. 9.
    Vesel A, Junkar I, Cvelbar U, Kovac J, Mozetic M. Surface modification of polyester by oxygen- and nitrogen-plasma treatment. Surf Interface Anal. 2008;40(11):1444–53. doi:10.1002/sia.2923.CrossRefGoogle Scholar
  10. 10.
    Contado C, Vighi E, Dalpiaz A, Leo E. Influence of secondary preparative parameters and aging effects on PLGA particle size distribution: a sedimentation field flow fractionation investigation. Anal Bioanal Chem. 2013;405(2–3):703–11.CrossRefPubMedGoogle Scholar
  11. 11.
    Guo WJ, Lee T, Sudimack J, Lee RJ. Receptor-specific delivery of liposomes via folate-PEG-Chol. J Liposome Res. 2000;10(2–3):179–95.CrossRefGoogle Scholar
  12. 12.
    Esmaeili F, Ghahremani MH, Ostad SN, Atyabi F, Seyedabadi M, Malekshahi MR, et al. Folate-receptor-targeted delivery of docetaxel nanoparticles prepared by PLGA-PEG-folate conjugate. J Drug Target. 2008;16(5):415–23. doi:10.1080/10611860802088630.CrossRefPubMedGoogle Scholar
  13. 13.
    Zhao HZ, Yue L, Yung L. Selectivity of folate conjugated polymer micelles against different tumor cells. Int J Pharm. 2008;349(1–2):256–68. doi:10.1016/j.ijpharm.2007.07.040.CrossRefPubMedGoogle Scholar
  14. 14.
    Barbucci R, Lamponi S, Magnani A, Peluso G, Petillo O. Metal complexes with linear and crosslinked polysaccharides as mediators of angiogenesis. Polym Adv Technol. 2001;12(3–4):271–8. doi:10.1002/pat.141.CrossRefGoogle Scholar
  15. 15.
    Li P, Wang Y, Peng Z, She F, Kong L. Development of chitosan nanoparticles as drug delivery systems for 5-fluorouracil and leucovorin blends. Carbohydr Polym. 2011;85(3):698–704. doi:10.1016/j.carbpol.2011.03.045.CrossRefGoogle Scholar
  16. 16.
    Ku Y, Shim IK, Lee JY, Park YJ, Rhee SH, Nam SH, et al. Chitosan/poly(l-lactic acid) multilayered membrane for guided tissue regeneration. J Biomed Mater Res A. 2009;90A(3):766–72. doi:10.1002/jbm.a.31846.CrossRefGoogle Scholar
  17. 17.
    Crcarevska MS, Dodov MG, Goracinova K. Chitosan coated Ca-alginate microparticles loaded with budesonide for delivery to the inflamed colonic mucosa. Eur J Pharm Biopharm. 2008;68(3):565–78. doi:10.1016/j.ejpb.2007.06.007.CrossRefGoogle Scholar
  18. 18.
    Chandy T, Wilson RF, Rao GHR, Das GS. Changes in cisplatin delivery due to surface-coated poly (lactic acid)–poly(∊-caprolactone)microspheres. J Biomater Appl. 2002;16(4):275–91. doi:10.1106/088532802024246.CrossRefPubMedGoogle Scholar
  19. 19.
    Kato Y, Onishi H, Machida Y. Application of chitin and chitosan derivatives in the pharmaceutical field. Curr Pharm Biotechnol. 2003;4(5):303–9. doi:10.2174/1389201033489748.CrossRefPubMedGoogle Scholar
  20. 20.
    Lim DW, Park TG. Stereocomplex formation between enantiomeric PLA–PEG–PLA triblock copolymers: characterization and use as protein-delivery microparticulate carriers. J Appl Polym Sci. 2000;75(13):1615–23. doi:10.1002/(sici)1097-4628(20000328)75:13<1615::aid-app7>3.0.co;2-l.CrossRefGoogle Scholar
  21. 21.
    Pasut G, Canal F, Dalla Via L, Arpicco S, Veronese FM, Schiavon O. Antitumoral activity of PEG-gemcitabine prodrugs targeted by folic acid. J Control Release. 2008;127(3):239–48. doi:10.1016/j.jconrel.2008.02.002.CrossRefPubMedGoogle Scholar
  22. 22.
    Musumeci T, Ventura CA, Giannone I, Ruozi B, Montenegro L, Pignatello R, et al. PLA/PLGA nanoparticles for sustained release of docetaxel. Int J Pharm. 2006;325(1–2):172–9. doi:10.1016/j.ijpharm.2006.06.023.CrossRefPubMedGoogle Scholar
  23. 23.
    Müller RH, Jacobs C. Buparvaquone mucoadhesive nanosuspension: preparation, optimisation and long-term stability. Int J Pharm. 2002;237(1–2):151–61. doi:10.1016/s0378-5173(02)00040-6.CrossRefPubMedGoogle Scholar
  24. 24.
    Guo CQ, Gemeinhart RA. Understanding the adsorption mechanism of chitosan onto poly(lactide-co-glycolide) particles. Eur J Pharm Biopharm. 2008;70(2):597–604. doi:10.1016/j.ejpb.2008.06.008.CrossRefPubMedGoogle Scholar
  25. 25.
    Quemeneur F, Rinaudo M, Pépin-Donat B. Influence of molecular weight and pH on adsorption of chitosan at the surface of large and giant vesicles. Biomacromolecules. 2007;9(1):396–402. doi:10.1021/bm700943j.CrossRefPubMedGoogle Scholar
  26. 26.
    Gaumet M, Vargas A, Gurny R, Delie F. Nanoparticles for drug delivery: the need for precision in reporting particle size parameters. Eur J Pharm Biopharm. 2008;69(1):1–9. doi:10.1016/j.ejpb.2007.08.001.CrossRefPubMedGoogle Scholar
  27. 27.
    Wang ZH, Wang ZY, Sun CS, Wang CY, Jiang TY, Wang SL. Trimethylated chitosan-conjugated PLGA nanoparticles for the delivery of drugs to the brain. Biomaterials. 2010;31(5):908–15. doi:10.1016/j.biomaterials.2009.09.104.CrossRefPubMedGoogle Scholar
  28. 28.
    Mu L, Feng SS. Vitamin E TPGS used as emulsifier in the solvent evaporation/extraction technique for fabrication of polymeric nanospheres for controlled release of paclitaxel (Taxol (R)). J Control Release. 2002;80(1–3):129–44.CrossRefPubMedGoogle Scholar
  29. 29.
    Huang YC, Huang CC, Huang YY, Chen KS. Surface modification and characterization of chitosan or PLGA membrane with laminin by chemical and oxygen plasma treatment for neural regeneration. J Biomed Mater Res A. 2007;82A(4):842–51. doi:10.1002/jbm.a.31036.CrossRefGoogle Scholar
  30. 30.
    Morlock M, Kissel T, Li YX, Koll H, Winter G. Erythropoietin loaded microspheres prepared from biodegradable LPLG-PEO-LPLG triblock copolymers: protein stabilization and in vitro release properties. J Control Release. 1998;56(1–3):105–15.CrossRefPubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2013

Authors and Affiliations

  1. 1.Institute for Frontier MaterialsDeakin UniversityWaurn PondsAustralia
  2. 2.Agricultural Product Processing Research InstituteChinese Academy of Tropical Agricultural SciencesZhanjiangPeople’s Republic of China

Personalised recommendations