AAPS PharmSciTech

, Volume 15, Issue 1, pp 29–43 | Cite as

A Review of the Advancements in Probiotic Delivery: Conventional vs. Non-conventional Formulations for Intestinal Flora Supplementation

  • Mershen Govender
  • Yahya E. Choonara
  • Pradeep Kumar
  • Lisa C. du Toit
  • Sandy van Vuuren
  • Viness PillayEmail author
Review Article


Probiotic delivery systems are widely used nutraceutical products for the supplementation of natural intestinal flora. These delivery systems vary greatly in effectiveness to exert health benefits for a patient. Probiotic delivery systems can be categorized into conventional, pharmaceutical formulations, and non-conventional, mainly commercial food-based, products. The degree of health benefits provided by these probiotic formulations varies in their ability to deliver viable, functional bacteria in large enough numbers (effectiveness), to provide protection against the harsh effects of the gastric environment and intestinal bile (in vivo protection), and to survive formulation processes (viability). This review discusses the effectiveness of these probiotic delivery systems to deliver viable functional bacteria focusing on the ability to protect the encapsulated probiotics during formulation process as well as against harsh physiological conditions through formulation enhancements using coatings and polymer enhancements. A brief overview on the health benefits of probiotics, current formulation, patient and legal issues facing probiotic delivery, and possible recommendations for the enhanced delivery of probiotic bacteria are also provided. Newer advanced in vitro analyses that can accurately determine the effectiveness of a probiotic formulation are also discussed with an ideal probiotic delivery system hypothesized through a combination of the two probiotic delivery systems described.


conventional and non-conventional formulations drug delivery systems design intestinal flora nutraceutical products probiotics 


  1. 1.
    Fuller R. Probiotics in human medicine. Gut. 1991;32(4):439–42. doi: 10.1136/gut.32.4.439.PubMedGoogle Scholar
  2. 2.
    Saarela M, Mogensen G, Fonden R, Matto J, Mattila-Sandholm T. Probiotic bacteria: safety, functional and technological properties. J Biotechnol. 2000;84(3):197–215. doi: 10.1016/S0168-1656(00)00375-8.PubMedGoogle Scholar
  3. 3.
    FAO-WHO. Food and Health Agricultural Organization of the United Nations and World Health Organization. Guidelines for the evaluation of probiotics in food. Working Group Rep, Food and Health Agricultural Organization of the United Nations and World Health Organization, Washington, DC. 2002.Google Scholar
  4. 4.
    Collado MC, Meriluoto J, Salminen S. In vitro analysis of probiotic strain combinations to inhibit pathogen adhesion to human intestinal mucus. Food Res Intl. 2007;40(5):629–36. doi: 10.1016/j.foodres.2006.11.007.Google Scholar
  5. 5.
    Bosch M, Nart J, Audivert S, Bonachera MA, Alemany AS, Fuentes MC, et al. Isolation and characterization of probiotic strains for improving oral health. Arch Oral Biol. 2012;57(5):539–49. doi: 10.1016/j.archoralbio.2011.10.006.PubMedGoogle Scholar
  6. 6.
    Kopp-Hoolihan L. Prophylactic and therapeutic uses of probiotics: a review. J Am Diet Assoc. 2001;101(2):229–38. doi: 10.1016/S0002-8223(01)00060-8. 241.PubMedGoogle Scholar
  7. 7.
    Del Piano M, Morellic L, Strozzi GP, Allesina S, Barba M, Deidda F, et al. Probiotics: from research to consumer. Digest Liver Dis. 2006;38 Suppl 2:248–55. doi: 10.1016/S1590-8658(07)60004-8.Google Scholar
  8. 8.
    Lourens-Hattingh A, Viljoen BC. Yogurt as probiotic carrier food. Int Diary J. 2001;11(1–2):1–17. doi: 10.1016/S0958-6946(01)00036-X.Google Scholar
  9. 9.
    Stevenson C, Blaauw R. Probiotics, with special emphasis on their role in the management of irritable bowel syndrome. S Afr J Clin Nutr. 2011;24(2):63–73.Google Scholar
  10. 10.
    Todd J. Dairy products in infant nutrition-latest developments. Aust J Dairy Technol. 2003;58(2):55–7.Google Scholar
  11. 11.
    Kuitunen M, Kukkonen K, Juntunen-Backman K, Korpela R, Poussa T, Tuure T, et al. Probiotics prevent IgE-associated allergy until age 5 years in cesarean-delivered children but not in the total cohort. J Allergy Clin Immunol. 2009;123(2):335–41. doi: 10.1016/j.jaci.2008.11.019.PubMedGoogle Scholar
  12. 12.
    Iannitti T, Palmieri B. Therapeutical use of probiotic formulations in clinical practice. Clin Nutr. 2010;29(6):701–25. doi: 10.1016/j.clnu.2010.05.004.PubMedGoogle Scholar
  13. 13.
    Holzapfel WH, Haberer P, Snel J, Schillinger U, Huisin’tVeld JHJ. Overview of gut flora and probiotics. Int J Food Microbiol. 1998;41(2):85–101.PubMedGoogle Scholar
  14. 14.
    Juntunen M, Kirjavainen PV, Ouwehand AC, Salminen SJ, Isolauri E. Adherence of probiotic bacteria to human intestinal mucus in healthy infants and during rotavirus infection. Clin Diagn Lab Immun. 2001;8(2):293–6. doi: 10.1128/CDLI.8.2.293-296.2001.Google Scholar
  15. 15.
    Janer C, Pelaez C, Requena T. Caseinomacropeptide and whey protein concentrate enhance Bifidobacterium lactis growth in milk. Food Chem. 2004;86(2):263–7. doi: 10.1016/j.foodchem.2003.09.034.Google Scholar
  16. 16.
    Penner R, Fedorak RN, Madsen KL. Probiotics and nutraceuticals: non-medicinal treatments of gastrointestinal diseases. Curr Opin Pharmacol. 2005;5(6):596–603. doi: 10.1016/j.coph.2005.06.009.PubMedGoogle Scholar
  17. 17.
    Sunada Y, Nakamura S, Kamei C. Effect of Lactobacillus acidophilus strain L-55 on the development of atopic dermatitis-like skin lesions in NC/Nga mice. Int Immunopharmacol. 2008;8(13–14):1761–6. doi: 10.1016/j.intimp.2008.08.011.PubMedGoogle Scholar
  18. 18.
    Mitsuoka T. Recent trends in research on intestinal flora. Bifidobacteria Microflora. 1982;1:3–24.Google Scholar
  19. 19.
    Hove H, Norgaard H, Mortensen PB. Lactic acid bacteria and the human gastrointestinal tract. Eur J Clin Nutr. 1999;53(5):339–50. doi: 10.1038/sj.ejcn.1600773.PubMedGoogle Scholar
  20. 20.
    D’Souza AL, Rajkumar C, Cooke J, Bulpitt CJ. Probiotics in prevention of antibiotic associated diarrhoea: meta­analysis. BMJ. 2002;324:1361. doi: 10.1136/bmj.324.7350.1361.PubMedGoogle Scholar
  21. 21.
    McConnell EL, Fadda HM, Basit AW. Gut instincts: explorations in intestinal physiology and drug delivery. Int J Pharm. 2008;364(2):213–26. doi: 10.1016/j.ijpharm.2008.05.012.PubMedGoogle Scholar
  22. 22.
    Yamada T, Alpers D, Kalloo AN, Kaplowitz N, Owyang C, Powell DW. Principles of clinical gastroenterology. West Sussex: Wiley; 2008.Google Scholar
  23. 23.
    Reiff C, Kelly D. Inflammatory bowel disease, gut bacteria and probiotic therapy. Int J Food Microbiol. 2010;300(1):25–33. doi: 10.1016/j.ijmm.2009.08.004.Google Scholar
  24. 24.
    Beachey EH. Bacterial adherence: adhesion–receptor interactions mediating the attachment of bacteria to mucosal surfaces. J Infect Dis. 1981;143(3):325–45.PubMedGoogle Scholar
  25. 25.
    Vasiljevic T, Shah NP. Probiotics—from Metchnikoff to bioactives. Int Diary J. 2008;18(7):714–28. doi: 10.1016/j.idairyj.2008.03.004.Google Scholar
  26. 26.
    Rivera-Espinoza Y, Gallardo-Navarro Y. Non-dairy probiotic products. Food Microbiol. 2010;27(1):1–11. doi: 10.1016/ Scholar
  27. 27.
    Verna EC, Lucak S. Use of probiotics in gastrointestinal disorders: what to recommend? Therap Adv Gastroenterol. 2010;3(5):307–19. doi: 10.1177/1756283X10373814.PubMedCentralPubMedGoogle Scholar
  28. 28.
    Alander M, Matto J, Kneifel W, Johansson M, Kogler B, Crittenden R, et al. Effect of galacto-oligosaccharide supplementation on human faecal microflora and on survival and persistence of Bifidobacterium lactis Bb-12 in the gastrointestinal tract. Int Diary J. 2001;11(10):817–25. doi: 10.1016/S0958-6946(01)00100-5.Google Scholar
  29. 29.
    Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E. The prokaryotes: a handbook on the biology of bacteria, bacteria: firmicutes, cyanobacteria. 3rd ed. New York: Springer Science + Business Media; 2006.Google Scholar
  30. 30.
    Spinler JK, Taweechotipatr M, Rognerud CL, Ou CN, Tumwasorn S, Versalovic J. Human-derived probiotic Lactobacillus reuteri demonstrate antimicrobial activities targeting diverse enteric bacterial pathogens. Anaerobe. 2008;14(3):166–71. doi: 10.1016/j.anaerobe.2008.02.001.PubMedCentralPubMedGoogle Scholar
  31. 31.
    Quigley EMM. Prebiotics and probiotics; modifying and mining the microbiota. Pharmacol Res. 2010;61(3):213–8. doi: 10.1016/j.phrs.2010.01.004.PubMedGoogle Scholar
  32. 32.
    Cook MT, Tzortzis G, Charalampopoulos D, Khutoryanskiy VV. Microencapsulation of probiotics for gastrointestinal delivery. J Control Release. 2012;162(1):56–67. doi: 10.1016/j.jconrel.2012.06.003.PubMedGoogle Scholar
  33. 33.
    Maragkoudakis PA, Zoumpopoulou G, Miaris C, Kalantzopoulos G, Pot B, Tsakalidou E. Probiotic potential of Lactobacillus strains isolated from dairy products. Int Diary J. 2006;16(3):189–99. doi: 10.1016/j.idairyj.2005.02.009.Google Scholar
  34. 34.
    Rabiu BA, Gibson GR. Carbohydrates: a limit on bacterial diversity within the colon. Biol Rev. 2002;77(3):443–53. doi: 10.1017/S1464793102005961.PubMedGoogle Scholar
  35. 35.
    Stanton C, Lynch PB, Collins JK, Fitzgerald G, Ross RP. Probiotic cheese. Int Diary J. 1998;8(5):491–6. doi: 10.1016/S0958-6946(98)00080-6.Google Scholar
  36. 36.
    Joosten H, Bidlas E, Garofalo N. Salmonella detection in probiotic products. Int J Food Microbiol. 2006;110(1):104–7. doi: 10.1016/j.ijfoodmicro.2006.01.036.PubMedGoogle Scholar
  37. 37.
    Khan MI, Arshad MS, Anjum FM, Sameen A, ur-Rehman A, Gill WT. Meat as a functional food with special reference to probiotic sausages. Food Res Int. 2011;44(10):3125–33. doi: 10.1016/j.foodres.2011.07.033.Google Scholar
  38. 38.
    Cousin FJ, Louesdon S, Maillard MB, Parayre S, Falentin H, Deutsch SM, et al. The first dairy product exclusively fermented by Propionibacterium freudenreichii: a new vector to study probiotic potentialities in vivo. Food Microbiol. 2012;32(1):135–46. doi: 10.1016/ Scholar
  39. 39.
    Schrezenmeir J, de Vrese M. Probiotics, prebiotics, and synbiotics—approaching a definition. Am J Clin Nutr. 2001;77 Suppl 2:361S–4S.Google Scholar
  40. 40.
    Lund B, Adamsson I, Edlund C. Gastrointestinal transit survival of an Enterococcus faecium probiotic strain administered with or without vancomycin. Int J Food Microbiol. 2002;77(1–2):109–15. doi: 10.1016/S0168-1605(02)00047-8.PubMedGoogle Scholar
  41. 41.
    Mattila-Sandholm T, Myllärinen P, Crittenden R, Mogensen G, Fondén R, Saarela M. Technological challenges for future probiotic foods. Int Diary J. 2002;12(2–3):173–82. doi: 10.1016/S0958-6946(01)00099-1.Google Scholar
  42. 42.
    Ding WK, Shah NP. Acid, bile and heat tolerance of free and microencapsulated probiotic bacteria. J Food Sci. 2007;72(9):446–50. doi: 10.1111/j.1750-3841.2007.00565.x.Google Scholar
  43. 43.
    Siepmann F, Wahle C, Leclercq B, Carlin B, Siepmann J. pH-sensitive film coatings: towards a better understanding and facilitated optimization. Eur J Pharm Biopharm. 2008;68(1):2–10. doi: 10.1016/j.ejpb.2007.03.025.PubMedGoogle Scholar
  44. 44.
    Hou RCW, Lin MY, Wang MMC, Tzen JTC. Increase of viability of entrapped cells of Lactobacillus delbrueckii ssp. bulgaricus in artificial sesame oil emulsions. J Dairy Sci. 2003;86(2):424–8. doi: 10.3168/jds.S0022-0302(03)73620-0.PubMedGoogle Scholar
  45. 45.
    Doleyres Y, Lacroix C. Technologies with free and immobilised cells for probiotic bifidobacteria production and protection. Int Diary J. 2005;15(10):973–88. doi: 10.1016/j.idairyj.2004.11.014.Google Scholar
  46. 46.
    Oliveira RPS, Florence ACR, Silva RC, Perego P, Converti A, Gioielli LA, et al. Effect of different prebiotics on the fermentation kinetics, probiotic survival and fatty acids profiles in nonfat symbiotic fermented milk. Int J Food Microbiol. 2009;128(3):467–72. doi: 10.1016/j.ijfoodmicro.2008.10.012.PubMedGoogle Scholar
  47. 47.
    Krasaekoopt W, Bhandari B, Deeth H. The influence of coating materials on some properties of alginate beads and survivability of microencapsulated probiotic bacteria. Int Diary J. 2004;14(8):737–43. doi: 10.1016/j.idairyj.2004.01.004.Google Scholar
  48. 48.
    Jensen H, Grimmer S, Naterstad K, Axelsson L. In vitro testing of commercial and potential probiotic lactic acid bacteria. Int J Food Microbiol. 2012;153(1–2):216–22. doi: 10.1016/j.ijfoodmicro.2011.11.020.PubMedGoogle Scholar
  49. 49.
    Bhardwaj A, Gupta H, Kapila S, Kaur G, Vij S, Malik RK. Safety assessment and evaluation of probiotic potential of bacteriocinogenic Enterococcus faecium KH 24 strain under in vitro and in vivo conditions. Int J Food Microbiol. 2010;141(3):156–64. doi: 10.1016/j.ijfoodmicro.2010.05.001.PubMedGoogle Scholar
  50. 50.
    Copeland DR, McVay MR, Dassinger MS, Jackson RJ, Smith SD. Probiotic fortified diet reduces bacterial colonization and translocation in a long-term neonatal rabbit model. J Pediatr Surg. 2009;44(6):1061–4. doi: 10.1016/j.jpedsurg.2009.02.014.PubMedGoogle Scholar
  51. 51.
    Buddenborg C, Daudel D, Liebrecht S, Greune L, Humberg V, Schmidt MA. Development of a tripartite vector system for live oral immunization using a Gram-negative probiotic carrier. Int J Med Microbiol. 2008;298(1–2):105–14. doi: 10.1016/j.ijmm.2007.08.008.PubMedGoogle Scholar
  52. 52.
    Panigrahi A, Kiron V, Satoh S, Hirono I, Kobayashi T, Sugita H, et al. Immune modulation and expression of cytokine genes in rainbow trout Oncorhynchus mykiss upon probiotic feeding. Dev Comp Immunol. 2007;31(4):372–82. doi: 10.1016/j.dci.2006.07.004.PubMedGoogle Scholar
  53. 53.
    Tseng DY, Ho PL, Huang SY, Cheng SC, Shiu YL, Chiu CS, et al. Enhancement of immunity and disease resistance in the white shrimp, Litopenaeus vannamei, by the probiotic, Bacillus subtilis E20. Fish Shellfish Immunol. 2009;26(2):339–44. doi: 10.1016/j.fsi.2008.12.003.PubMedGoogle Scholar
  54. 54.
    Cross ML. Immunoregulation by probiotic lactobacilli: pro-Th1 signals and their relevance to human health. Clin Appl Immunol Rev. 2002;3(3):115–25. doi: 10.1016/S1529-1049(02)00057-0.Google Scholar
  55. 55.
    Stritzker J, Weibel S, Hill PJ, Oelschlaeger TA, Goebel W, Szalay AA. Tumor-specific colonization, tissue distribution, and gene induction by probiotic Escherichia coli Nissle 1917 in live mice. Int J Med Microbiol. 2007;297(3):151–62. doi: 10.1016/j.ijmm.2007.01.008.PubMedGoogle Scholar
  56. 56.
    Makinen K, Berger B, Bel-Rhlid R, Ananta E. Science and technology for the mastership of probiotic applications in food products. J Biotechnol. 2012;162(4):356–65. doi: 10.1016/j.jbiotec.2012.07.006.PubMedGoogle Scholar
  57. 57.
    Grzeskowiak L, Grönlund MM, Beckmann C, Salminen S, von Berg A, Isolauri E. The impact of perinatal probiotic intervention on gut microbiota: double-blind placebo-controlled trials in Finland and Germany. Anaerobe. 2012;18(1):7–13. doi: 10.1016/j.anaerobe.2011.09.006.PubMedGoogle Scholar
  58. 58.
    Guerra NP, Bernardez PF, Mendez J, Cachaldora P, Castro LP. Production of four potentially probiotic lactic acid bacteria and their evaluation as feed additives for weaned piglets. Anim Feed Sci Tech. 2007;134(1):89–107. doi: 10.1016/j.anifeedsci.2006.05.010.Google Scholar
  59. 59.
    Madden JAJ, Plummer SF, Tang J, Garaiova I, Plummer NT, Herbison M, et al. Effect of probiotics on preventing disruption of the intestinal microflora following antibiotic therapy: a double-blind, placebo-controlled pilot study. Int Immunopharmacol. 2005;5(6):1091–7. doi: 10.1016/j.intimp.2005.02.006.PubMedGoogle Scholar
  60. 60.
    Silva M, Jacobus NV, Deneke C, Gorbach SL. Antimicrobial substance from a human Lactobacillus strain. Antimicrob Agents Ch. 1987;31(8):1231–3. doi: 10.1128/AAC.31.8.1231.Google Scholar
  61. 61.
    Santiago GL, Verstraelen H, Poelvoorde N, De Corte S, Claeys G, Trog M, et al. A pilot study evaluating the safety of vaginal administration of a multi-particulate pellet formulation. Eur J Pharm Biopharm. 2009;73(3):399–403. doi: 10.1016/j.ejpb.2009.08.009.PubMedGoogle Scholar
  62. 62.
    Douglas LC, Sanders ME. Probiotics and prebiotics in dietetics practice. J Am Diet Assoc. 2008;108(3):510–21. doi: 10.1016/j.jada.2007.12.009.PubMedGoogle Scholar
  63. 63.
    Mombelli B, Gismondo MR. The use of probiotics in medical practice. Int J Antimicrob Ag. 2000;16(4):531–6. doi: 10.1016/S0924-8579(00)00322-8.Google Scholar
  64. 64.
    Scheinbach S. Probiotics: functionality and commercial status. Biotechnol Adv. 1998;16(3):581–608. doi: 10.1016/S0734-9750(98)00002-0.PubMedGoogle Scholar
  65. 65.
    Dash SK, Spreen AN, Ley BM. Health benefits of probiotics. Temecula: BL Publications; 1999.Google Scholar
  66. 66.
    Roueche E, Serris E, Thomas G, Perier-Camby L. Influence of temperature on the compaction of an organic powder and the mechanical strength of tablets. Powder Technol. 2006;162(2):138–44. doi: 10.1016/j.powtec.2005.12.005.Google Scholar
  67. 67.
    Ong L, Henriksson A, Shah NP. Development of probiotic Cheddar cheese containing Lactobacillus acidophilus, Lb. casei, Lb. paracasei and Bifidobacterium spp. and the influence of these bacteria on proteolytic patterns and production of organic acid. Int Diary J. 2006;16(5):446–56. doi: 10.1016/j.idairyj.2005.05.008.Google Scholar
  68. 68.
    Medici M, Vinderola CG, Perdigon G. Gut mucosal immunomodulation by probiotic fresh cheese. Int Diary J. 2004;14(7):611–8. doi: 10.1016/j.idairyj.2003.10.011.Google Scholar
  69. 69.
    Minelli EB, Benini A, Marzotto M, Sbarbati A, Ruzzenente O, Ferrario R, et al. Assessment of novel probiotic Lactobacillus casei strains for the production of functional dairy foods. Int Diary J. 2004;14(8):723–36. doi: 10.1016/j.idairyj.2004.01.007.Google Scholar
  70. 70.
    Phillips M, Kailasapathy K, Tran L. Viability of commercial probiotic cultures (L. acidophilus, Bifidobacterium sp. L. casei, L. paracasei and L. rhamnosus) in cheddar cheese. Int J Food Microbiol. 2006;108(2):276–80.PubMedGoogle Scholar
  71. 71.
    Bergamini CV, Hynes ER, Quiberoni A, Suarez VB, Zalazar CA. Probiotic bacteria as adjunct starters: influence of the addition methodology on their survival in a semi-hard Argentinean cheese. Food Res Int. 2005;38(5):597–604. doi: 10.1016/j.foodres.2004.11.013.Google Scholar
  72. 72.
    Ong L, Shah NP. Probiotic cheddar cheese: influence of ripening temperatures on survival of probiotic microorganisms, cheese composition and organic acid profiles. LWT- Food Sci Technol. 2009;42(7):1260–8. doi: 10.1016/j.lwt.2009.01.011.Google Scholar
  73. 73.
    Hemsworth J, Hekmat S, Reid G. The development of micronutrient supplemented probiotic yogurt for people living with HIV: laboratory testing and sensory evaluation. Innov Food Sci Emerg. 2011;12(1):79–84. doi: 10.1016/j.ifset.2010.11.004.Google Scholar
  74. 74.
    Marafon AP, Sumi A, Alcantara MR, Tamime AY, de Oliveira MN. Optimization of the rheological properties of probiotic yoghurts supplemented with milk proteins. LWT- Food Sci Technol. 2011;44(2):511–9. doi: 10.1016/j.lwt.2010.09.005.Google Scholar
  75. 75.
    Possemiers S, Marzorati M, Verstraete W, Van de Wiele T. Bacteria and chocolate: a successful combination for probiotic delivery. Int J Food Microbiol. 2010;141(1–2):97–103. doi: 10.1016/j.ijfoodmicro.2010.03.008.PubMedGoogle Scholar
  76. 76.
    Aragon-Alegroa LC, Alegro JHA, Cardarelli HR, Chiu MC, Saad SMI. Potentially probiotic and synbiotic chocolate mousse. LWT. 2007;40(4):669–75. doi: 10.1016/j.lwt.2006.02.020.Google Scholar
  77. 77.
    Senaka Ranadheera C, Evans CA, Adams MC, Baines SK. In vitro analysis of gastrointestinal tolerance and intestinal cell adhesion of probiotics in goat’s milk ice cream and yogurt. Food Res Int. 2012;49(2):619–25. doi: 10.1016/j.foodres.2012.09.007.Google Scholar
  78. 78.
    Khalf M, Dabour N, Kheadr E, Fliss I. Viability of probiotic bacteria in maple sap products under storage and gastrointestinal conditions. Bioresource Technol. 2010;101(20):7966–72. doi: 10.1016/j.biortech.2010.05.053.Google Scholar
  79. 79.
    Kos B, Suskovic J, Beganovic J, Gjuracic K, Frece J, Iannaccone C, et al. Characterization of the three selected probiotic strains for the application in food industry. World J Microbiol Biotechnol. 2008;24(5):699–707. doi: 10.1007/s11274-007-9528-y.Google Scholar
  80. 80.
    Bolla PA, de los Angeles Serradell M, de Urraza PJ, De Antoni GL. Effect of freeze-drying on viability and in vitro probiotic properties of a mixture of lactic acid bacteria and yeasts isolated from kefir. J Dairy Res. 2011;78(1):15–22. doi: 10.1017/S0022029910000610.PubMedGoogle Scholar
  81. 81.
    Zarate G, Nader-Macias ME. Viability and biological properties of probiotic vaginal lactobacilli after lyophilization and refrigerated storage into gelatin capsules. Process Biochem. 2006;41(8):1779–85. doi: 10.1016/j.procbio.2006.03.024.Google Scholar
  82. 82.
    Vincenzetti S, Savini M, Cecchini C, Micozzi D, Carpi F, Vita A, Polidori P. Effects of Lyophilization and Use of Probiotics on Donkey’s Milk Nutritional Characteristics. Int J Food Eng. 2011;7(5), Article 8. doi: 10.2202/1556-3758.2032.
  83. 83.
    Savini M, Cecchini C, Verdenelli MC, Silvi S, Orpianesi C, Cresci A. Pilot-scale production and viability analysis of freeze-dried probiotic bacteria using different protective agents. Nutrients. 2010;2(3):330–9. doi: 10.3390/nu2030330.PubMedCentralPubMedGoogle Scholar
  84. 84.
    Heidebach T, Forst P, Kulozik U. Influence of casein-based microencapsulation on freeze-drying and storage of probiotic cells. J Food Eng. 2010;98(3):309–16. doi: 10.1016/j.jfoodeng.2010.01.003.Google Scholar
  85. 85.
    Weinbreck F, Bodnar I, Marco ML. Can encapsulation lengthen the shelf-life of probiotic bacteria in dry products? Int J Food Microbiol. 2010;136(3):364–7. doi: 10.1016/j.ijfoodmicro.2009.11.004.PubMedGoogle Scholar
  86. 86.
    Vesterlund S, Salminen K, Salminen S. Water activity in dry foods containing live probiotic bacteria should be carefully considered: a case study with Lactobacillus rhamnosus GG in flaxseed. Int J Food Microbiol. 2012;157(2):319–21. doi: 10.1016/j.ijfoodmicro.2012.05.016.PubMedGoogle Scholar
  87. 87.
    Zayed G, Roos YH. Influence of trehalose and moisture content on survival of Lactobacillus salivarius subjected to freeze-drying and storage. Process Biochem. 2004;39(9):1081–6. doi: 10.1016/S0032-9592(03)00222-X.Google Scholar
  88. 88.
    Vitali B, Ndagijimana M, Maccaferri S, Biagi E, Guerzoni ME, Brigidi P. An in vitro evaluation of the effect of probiotics and prebiotics on the metabolic profile of human microbiota. Anaerobe. 2012;18(4):386–91. doi: 10.1016/j.anaerobe.2012.04.014.PubMedGoogle Scholar
  89. 89.
    Bauer SAW, Schneider S, Behr J, Kulozik U, Foerst P. Combined influence of fermentation and drying conditions on survival and metabolic activity of starter and probiotic cultures after low-temperature vacuum drying. J Biotechnol. 2012;159(4):351–7. doi: 10.1016/j.jbiotec.2011.06.010.PubMedGoogle Scholar
  90. 90.
    Juarez Tomas MS, Ocana VS, Nader-Macias ME. Viability of vaginal probiotic lactobacilli during refrigerated and frozen storage. Anaerobe. 2004;10(1):1–5. doi: 10.1016/j.anaerobe.2004.01.002.PubMedGoogle Scholar
  91. 91.
    Dave RI, Shah NP. Viability of yoghurt and probiotic bacteria in yoghurts made from commercial starter cultures. Int Diary J. 1997;7(1):31–41. doi: 10.1016/S0958-6946(96)00046-5.Google Scholar
  92. 92.
    Klayraung S, Viernstein H, Okonogi S. Development of tablets containing probiotics: effects of formulation and processing parameters on bacterial viability. Int J Pharm. 2009;370(1–2):54–60. doi: 10.1016/j.ijpharm.2008.11.004.PubMedGoogle Scholar
  93. 93.
    Calinescu C, Mulhbacher J, Nadeau E, Fairbrother JM, Mateescu MA. Carboxymethyl high amylose starch (CM-HAS) as excipient for Escherichia coli oral formulation. Eur J Pharm Biopharm. 2005;60(1):53–60. doi: 10.1016/j.ejpb.2004.12.006.PubMedGoogle Scholar
  94. 94.
    Yang L, Chu JS, Fix JA. Colon-specific drug delivery: new approaches and in vitro/in vivo evaluation. Int J Pharm. 2002;235(1–2):1–15. doi: 10.1016/S0378-5173(02)00004-2.PubMedGoogle Scholar
  95. 95.
    Calinescu C, Nadeau E, Mulhbacher J, Fairbrother JM, Mateescu MA. Carboxymethyl high amylose starch for F4 fimbriae gastro-resistant oral formulation. Int J Pharm. 2007;343(1–2):18–25. doi: 10.1016/j.ijpharm.2007.04.017.PubMedGoogle Scholar
  96. 96.
    Chan ES, Zhang Z. Bioencapsulation by compression coating of probiotic bacteria for their protection in an acidic medium. Process Biochem. 2005;40(10):3346–51. doi: 10.1016/j.procbio.2005.03.001.Google Scholar
  97. 97.
    Poulin JF, Caillard R, Subirade M. β-Lactoglobulin tablets as a suitable vehicle for protection and intestinal delivery of probiotic bacteria. Int J Pharm. 2011;405(1–2):47–54. doi: 10.1016/j.ijpharm.2010.11.041.PubMedGoogle Scholar
  98. 98.
    Doherty SB, Gee VL, Ross RP, Stanton C, Fitzgerald GF, Brodkorb A. Development and characterisation of whey protein micro-beads as potential matrices for probiotic protection. Food Hydrocolloid. 2011;25(6):1604–17. doi: 10.1016/j.foodhyd.2010.12.012.Google Scholar
  99. 99.
    Heidebach T, Forst P, Kulozik U. Microencapsulation of probiotic cells by means of rennet-gelation of milk proteins. Food Hydrocolloid. 2009;23(7):1670–7. doi: 10.1016/j.foodhyd.2009.01.006.Google Scholar
  100. 100.
    Kaushal G, Shao J. Oral delivery of β-lactamase by Lactococcus lactis subsp. lactis transformed with Plasmid ss80. Int J Pharm. 2006;312(1–2):90–5.PubMedGoogle Scholar
  101. 101.
    Brachkova MI, Duarte MA, Pinto JF. Preservation of viability and antibacterial activity of Lactobacillus spp. in calcium alginate beads. Eur J Pharm Sci. 2010;41(5):589–96. doi: 10.1016/j.ejps.2010.08.008.PubMedGoogle Scholar
  102. 102.
    Chandramouli V, Kailasapathy K, Peiris P, Jones M. An improved method of microencapsulation and its evaluation to protect Lactobacillus spp. in simulated gastric conditions. J Microbiol Methods. 2004;56(1):27–35. doi: 10.1016/j.mimet.2003.09.002.PubMedGoogle Scholar
  103. 103.
    Albertini B, Vitali B, Passerini N, Cruciani F, Di Sabatino M, Rodriguez L, et al. Development of microparticulate systems for intestinal delivery of Lactobacillus acidophilus and Bifidobacterium lactis. Eur J Pharm Sci. 2010;40(4):359–66. doi: 10.1016/j.ejps.2010.04.011.PubMedGoogle Scholar
  104. 104.
    Reid G. In vitro testing of Lactobacillus acidophilus NCFMTM as a possible probiotic for the urogenital tract. Int Diary J. 2000;10(5–6):415–9. doi: 10.1016/S0958-6946(00)00059-5.Google Scholar
  105. 105.
    Ya W, Reifer C, Miller LE. Efficacy of vaginal probiotic capsules for recurrent bacterial vaginosis: a double-blind, randomized, placebo-controlled study. Am J Obstet Gynecol. 2010;203(2):120.e1–6. doi: 10.1016/j.ajog.2010.05.023.Google Scholar
  106. 106.
    Kailasapathy K. Survival of free and encapsulated probiotic bacteria and their effect on the sensory properties of yoghurt. LWT. 2006;39(10):1221–7. doi: 10.1016/j.lwt.2005.07.013.Google Scholar
  107. 107.
    Saxelin M, Lassig A, Karjalainen H, Tynkkynen S, Surakka A, Vapaatalo H, et al. Persistence of probiotic strains in the gastrointestinal tract when administered as capsules, yoghurt, or cheese. Int J Food Microbiol. 2010;144(2):293–300. doi: 10.1016/j.ijfoodmicro.2010.10.009.PubMedGoogle Scholar
  108. 108.
    Sultana K, Godward G, Reynolds N, Arumugaswamy R, Peiris P, Kailasapathy K. Encapsulation of probiotic bacteria with alginate–starch and evaluation of survival in simulated gastrointestinal conditions and in yoghurt. Int J Food Microbiol. 2000;62(1–2):47–55. doi: 10.1016/S0168-1605(00)00380-9.PubMedGoogle Scholar
  109. 109.
    Jankovic I, Sybesma W, Phothirath P, Ananta E, Mercenier A. Application of probiotics in food products- challenges and new approaches. Curr Opin Biotech. 2010;21(2):175–81. doi: 10.1016/j.copbio.2010.03.009.PubMedGoogle Scholar
  110. 110.
    O’Brien J, Crittenden R, Ouwehand AC, Salminen S. Safety evaluation of probiotics. Trends Food Sci Tech. 1999;10(12):418–24. doi: 10.1016/S0924-2244(00)00037-6.Google Scholar
  111. 111.
    Zhou JS, Gill HS. Immunostimulatory probiotic Lactobacillus rhamnosus HN001 and Bifidobacterium lactis HN019 do not induce pathological inflammation in mouse model of experimental autoimmune thyroiditis. Int J Food Microbiol. 2005;103(1):97–104. doi: 10.1016/j.ijfoodmicro.2004.11.031.PubMedGoogle Scholar
  112. 112.
    Molly K, Vande Woestyne M, Verstraete W. Development of a 5-step multi-chamber reactor as a simulation of the human intestinal microbial ecosystem. Appl Microbiol Biot. 1993;39(2):254–8. doi: 10.1007/BF00228615.Google Scholar
  113. 113.
    Alander M, De Smet I, Nollet L, Verstraete W, von Wright A, Mattila-Sandholm T. The effect of probiotic strains on the microbiota of the Simulator of the Human Intestinal Microbial Ecosystem (SHIME). Int J Food Microbiol. 1999;46(1):71–9. doi: 10.1016/S0168-1605(98)00182-2.PubMedGoogle Scholar
  114. 114.
    De Boever P, Deplancke B, Verstraete W. Fermentation by Gut Microbiota Cultured in a Simulator of the Human Intestinal Microbial Ecosystem Is Improved by Supplementing a Soygerm Powder. J Nutr. 2000;130(10):2599–606.PubMedGoogle Scholar
  115. 115.
    Mare L, Wolfaardt GM, Dicks LMT. Adhesion of Lactobacillus plantarum 423 and Lactobacillus salivarius 241 to the intestinal tract of piglets, as recorded with fluorescent in situ hybridization (FISH), and production of plantaricin 423 by cells colonized to the ileum. J Appl Microbiol. 2005;100(4):838–45. doi: 10.1111/j.1365-2672.2006.02835.x.Google Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2013

Authors and Affiliations

  • Mershen Govender
    • 1
  • Yahya E. Choonara
    • 1
  • Pradeep Kumar
    • 1
  • Lisa C. du Toit
    • 1
  • Sandy van Vuuren
    • 1
  • Viness Pillay
    • 1
    Email author
  1. 1.Department of Pharmacy and Pharmacology, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa

Personalised recommendations