AAPS PharmSciTech

, Volume 14, Issue 3, pp 1209–1218 | Cite as

Development of Hydrophobized Alginate Hydrogels for the Vessel-Simulating Flow-Through Cell and Their Usage for Biorelevant Drug-Eluting Stent Testing

  • Beatrice Semmling
  • Stefan Nagel
  • Katrin Sternberg
  • Werner Weitschies
  • Anne Seidlitz
Research Article

Abstract

The vessel-simulating flow-through cell (vFTC) has been used to examine release and distribution from drug-eluting stents in an in vitro model adapted to the stent placement in vivo. The aim of this study was to examine the effect of the admixture of different hydrophobic additives to the vessel wall simulating hydrogel compartment on release and distribution from model substance-coated stents. Four alginate-based gel formulations containing reversed-phase column microparticles LiChroprep® RP-18 or medium-chain triglycerides in form of preprocessed oil-in-water emulsions Lipofundin® MCT in different concentrations were successfully developed. Alginate and modified gels were characterized regarding the distribution coefficient for the fluorescent model substances, fluorescein and triamterene, and release as well as distribution of model substances from coated stents were investigated in the vFTC. Distribution coefficients for the hydrophobic model substance triamterene and the hydrophobized gel formulations were up to four times higher than for the reference gel. However, comparison of the obtained release profiles yielded no major differences in dissolution and distribution behavior for both fluorescent model substances (fluorescein, triamterene). Comparison of the test results with mathematically modeled data acquired using finite element methods demonstrated a good agreement between modeled data and experimental results indicating that gel hydrophobicity will only influence release in cases of fast releasing stent coatings.

KEY WORDS

biorelevant dissolution testing drug-eluting stent hydrophobized hydrogel release vessel-simulating flow-through cell 

Notes

ACKNOWLEDGMENTS

The authors thank Biotronik SE & Co. KG (Berlin, Germany) for supplying bare metal stent platforms. We are also grateful for the supply of Eudragit® by Evonik Industries AG (Essen, Germany). Additionally, the authors would like to acknowledge the laboratory work of Katja Semper, Marcus Schewe, and Thomas Brand. Furthermore, thanks are given to Grzegorz Garbacz for proposals regarding this work. This research was funded by the Federal Ministry of Education and Research (BMBF) within REMEDIS “Höhere Lebensqualität durch neuartige Mikroimplantate”.

REFERENCES

  1. 1.
    Fischman DL, Leon MB, Baim DS, Schatz RA, Savage MP, Penn I, et al. A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. N Engl J Med. 1994;331(8):496–501. doi: 10.1056/NEJM199408253310802.PubMedCrossRefGoogle Scholar
  2. 2.
    Serruys PW, de Jaegere P, Kiemeneij F, Macaya C, Rutsch W, Heyndrickx G, et al. A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease. N Engl J Med. 1994;331(8):489–95. doi: 10.1056/NEJM199408253310801.PubMedCrossRefGoogle Scholar
  3. 3.
    Morice M-C, Serruys PW, Sousa JE, Fajadet J, Ban Hayashi E, Perin M, et al. A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization. N Engl J Med. 2002;346(23):1773–80. doi: 10.1056/NEJMoa012843.PubMedCrossRefGoogle Scholar
  4. 4.
    Moses JW, Leon MB, Popma JJ, Fitzgerald PJ, Holmes DR, O’Shaughnessy C, et al. Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. N Engl J Med. 2003;349(14):1315–23. doi: 10.1056/NEJMoa035071.PubMedCrossRefGoogle Scholar
  5. 5.
    Khan W, Farah S, Domb AJ. Drug eluting stents: developments and current status. J Contr Release. 2012;161(2):703–12. doi: 10.1016/j.jconrel.2012.02.010.CrossRefGoogle Scholar
  6. 6.
    Steigerwald K, Merl S, Kastrati A, Wieczorek A, Vorpahl M, Mannhold R, et al. The pre-clinical assessment of rapamycin-eluting, durable polymer-free stent coating concepts. Biomaterials. 2009;30:632–7.PubMedCrossRefGoogle Scholar
  7. 7.
    Westedt U, Wittmar M, Hellwig M, Hanefeld P, Greiner A, Schaper AK, et al. Paclitaxel releasing films consisting of poly(vinyl alcohol)-graft-poly(lactide-co-glycolide) and their potential as biodegradable stent coatings. J Contr Release. 2006;111(1–2):235–46. doi: 10.1016/j.jconrel.2005.12.012.CrossRefGoogle Scholar
  8. 8.
    Guo Q, Knight PT, Mather PT. Tailored drug release from biodegradable stent coatings based on hybrid polyurethanes. J Contr Release. 2009;137(3):224–33. doi: 10.1016/j.jconrel.2009.04.016.CrossRefGoogle Scholar
  9. 9.
    Tzafriri AR, Groothuis A, Price GS, Edelman ER. Stent elution rate determines drug deposition and receptor-mediated effects. J Contr Release. 2012;161(3):918–26. doi: 10.1016/j.jconrel.2012.05.039.CrossRefGoogle Scholar
  10. 10.
    Kleinedler JJ, Foley JD, Orchard EA, Dugas TR. Novel nanocomposite stent coating releasing resveratrol and quercetin reduces neointimal hyperplasia and promotes re-endothelialization. J Contr Release. 2012;159(1):27–33. doi: 10.1016/j.jconrel.2012.01.008.CrossRefGoogle Scholar
  11. 11.
    Merciadez M, Alquier L, Metha R, Patel A, Wang A. A novel method for the elution of sirolimus (rapamycin) in drug-elution stents. Dissolution Technol. 2011; November: 37–42.Google Scholar
  12. 12.
    Kamberi M, Nayak S, Myo-Min K, Carter TP, Hancock L, Feder D. A novel accelerated in vitro release method for biodegradable coating of drug eluting stents: Insight to the drug release mechanisms. Eur J Pharm Sci. 2009;37(3–4):217––22. doi: 10.1016/j.ejps.2009.02.009.Google Scholar
  13. 13.
    Sirianni RW, Jang E-H, Miller KM, Saltzman WM. Parameter estimation methodology in a model of hydrophobic drug release from a polymer coating. J Contr Release. 2010;142(3):474–82. doi: 10.1016/j.jconrel.2009.11.021.CrossRefGoogle Scholar
  14. 14.
    Minghetti P, Cilurzo F, Selmin F, Casiraghi A, Grignani A, Montanari L. Sculptured drug-eluting stent for the on-site delivery of tacrolimus. Eur J Pharm Biopharm. 2009;73(3):331–6. doi: 10.1016/j.ejpb.2009.08.004.PubMedCrossRefGoogle Scholar
  15. 15.
    Thakkar AS, Abhyankar AD, Dani SI, Banker DN, Singh PI, Parmar SA, et al. Systemic exposure of sirolimus after coronary stent implantation in patients with de novo coronary lesions: Supralimus-Core® pharmacokinetic study. Indian Heart J. 2012;64(3):273–9.Google Scholar
  16. 16.
    Vetrovec GW, Rizik D, Williard C, Snead D, Piotrovski V, Kopia G. Sirolimus PK trial: a pharmacokinetic study of the sirolimus-eluting Bx velocity stent in patients with de novo coronary lesions. Catheter Cardiovasc Interv. 2006;67(1):32–7. doi: 10.1002/ccd.20565.PubMedCrossRefGoogle Scholar
  17. 17.
    Neubert A, Sternberg K, Nagel S, Harder C, Schmitz K-P, Kroemer HK, et al. Development of a vessel-simulating flow-through cell method for the in vitro evaluation of release and distribution from drug-eluting stents. J Contr Release. 2008;130(1):2–8. doi: 10.1016/j.jconrel.2008.05.012.CrossRefGoogle Scholar
  18. 18.
    Seidlitz A, Nagel S, Semmling B, Grabow N, Martin H, Senz V, et al. Examination of drug release and distribution from drug-eluting stents with a vessel-simulating flow-through cell. Eur J Pharm Biopharm. 2011;78(1):36–48. doi: 10.1016/j.ejpb.2010.12.021.PubMedCrossRefGoogle Scholar
  19. 19.
    Peppas NA, Bures P, Leobandung W, Ichikawa H. Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm. 2000;50(1):27–46. doi: 10.1016/S0939-6411(00)00090-4.PubMedCrossRefGoogle Scholar
  20. 20.
    Hoare TR, Kohane DS, Hoare TR, Kohane DS. Hydrogels in drug delivery: progress and challenges. Polymer. 2008;49(8):1993–2007. doi: 10.1016/j.polymer.2008.01.027.CrossRefGoogle Scholar
  21. 21.
    Hoffman AS. Hydrogels for biomedical applications. Adv Drug Deliv Rev. 2002;43:3–12.CrossRefGoogle Scholar
  22. 22.
    Draget KI, Smidsrød O, Skjåk-Bræk G. Alginates from algae. Biopolymers Online. 2005. DOI: 10.1002/3527600035.bpol6008Google Scholar
  23. 23.
    Zhang J, Daubert CR, Mulligan JH, Foegeding EA. Additive effects on the rheological behavior of alginate gels. Journal of Texture Studies. 2008;39(5):582–603. doi: 10.1111/j.1745-4603.2008.00159.x.CrossRefGoogle Scholar
  24. 24.
    Otsuka E, Suzuki A. A simple method to obtain a swollen PVA gel crosslinked by hydrogen bonds. J Appl Polym Sci. 2009;114(1):10–6. doi: 10.1002/app.30546.CrossRefGoogle Scholar
  25. 25.
    Kanakasabai P, Vijay P, Deshpande AP, Varughese S. Crosslinked poly(vinyl alcohol)/sulfonated poly(ether ether ketone) blend membranes for fuel cell applications—surface energy characteristics and proton conductivity. J Power Sourc. 2011;196(3):946–55. doi: 10.1016/j.jpowsour.2010.08.094.CrossRefGoogle Scholar
  26. 26.
    Ganguly S, Dash AK. A novel in situ gel for sustained drug delivery and targeting. Int J Pharm. 2004;276(1–2):83–92. doi: 10.1016/j.ijpharm.2004.02.014.PubMedCrossRefGoogle Scholar
  27. 27.
    Hoffman AS. Hydrogels for biomedical applications. Ann N Y Acad Sci. 2001;944(1):62–73. doi: 10.1111/j.1749-6632.2001.tb03823.x.PubMedCrossRefGoogle Scholar
  28. 28.
    Zentner GM, Rathi R, Shih C, McRea JC, Seo M-H, Oh H, et al. Biodegradable block copolymers for delivery of proteins and water-insoluble drugs. J Contr Release. 2001;72(1–3):203–15. doi: 10.1016/S0168-3659(01)00276-0.CrossRefGoogle Scholar
  29. 29.
    Rowley JA, Madlambayan G, Mooney DJ. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials. 1999;20(1):45–53. doi: 10.1016/S0142-9612(98)00107-0.PubMedCrossRefGoogle Scholar
  30. 30.
    Lee H-R, Park KM, Joung YK, Park KD, Do SH. Platelet-rich plasma loaded hydrogel scaffold enhances chondrogenic differentiation and maturation with up-regulation of CB1 and CB2. J Contr Release. 2012;159(3):332–7. doi: 10.1016/j.jconrel.2012.02.008.CrossRefGoogle Scholar
  31. 31.
    Augst AD, Kong HJ, Mooney DJ. Alginate hydrogels as biomaterials. Macromol Biosci. 2006;6(8):623–33. doi: 10.1002/mabi.200600069.PubMedCrossRefGoogle Scholar
  32. 32.
    Terry CM, Li L, Li H, Zhuplatov I, Blumenthal DK, Kim S-E, et al. In vivo evaluation of the delivery and efficacy of a sirolimus-laden polymer gel for inhibition of hyperplasia in a porcine model of arteriovenous hemodialysis graft stenosis. J Contr Release. 2012;160(3):459–67. doi: 10.1016/j.jconrel.2012.03.011.CrossRefGoogle Scholar
  33. 33.
    Allababidi S, Shah JC. Kinetics and mechanism of release from glyceryl monostearate-based implants: evaluation of release in a gel simulating in vivo implantation. J Pharm Sci. 1998;87(6):738–44. doi: 10.1021/js9703986.PubMedCrossRefGoogle Scholar
  34. 34.
    Hoang Thi TH, Chai F, Leprêtre S, Blanchemain N, Martel B, Siepmann F, et al. Bone implants modified with cyclodextrin: study of drug release in bulk fluid and into agarose gel. Int J Pharm. 2010;400(1–2):74–85.PubMedCrossRefGoogle Scholar
  35. 35.
    O’Brien C, Finch C, Barber T, Martens P, Simmons A. Analysis of drug distribution from a simulated drug-eluting stent strut using an in vitro framework. Ann Biomed Eng. 2012;40(12):2687–96. doi: 10.1007/s10439-012-0604-6.PubMedCrossRefGoogle Scholar
  36. 36.
    Sakai M, Imai T, Ohtake H, Azuma H, Otagiri M. Effects of absorption enhancers on the transport of model compounds in Caco-2 cell monolayers: assessment by confocal laser scanning microscopy. J Pharm Sci. 1997;86(7):779–85. doi: 10.1021/js960529n.PubMedCrossRefGoogle Scholar
  37. 37.
    Zhao Y, Jona J, Chow DT, Rong H, Semin D, Xia X, et al. High-throughput logP measurement using parallel liquid chromatography/ultraviolet/mass spectrometry and sample-pooling. Rapid Comm Mass Spectrom. 2002;16(16):1548–55. doi: 10.1002/rcm.749.CrossRefGoogle Scholar
  38. 38.
    McKee MG, Layman JM, Cashion MP, Long TE. Phospholipid nonwoven electrospun membranes. Science. 2006;311(5759):353–5. doi: 10.1126/science.1119790.PubMedCrossRefGoogle Scholar
  39. 39.
    Di Mario C, Meneveau N, Gil R, de Jaegere P, de Feyter PJ, Slager CJ, et al. Maximal blood flow velocity in severe coronary stenoses measured with a Doppler guidewire: limitations for the application of the continuity equation in the assessment of stenosis severity. Am J Cardiol. 1993;71(14):D54–61. doi: 10.1016/0002-9149(93)90134-X.CrossRefGoogle Scholar
  40. 40.
    Watanabe E, Takahashi M, Hayashi M. A possibility to predict the absorbability of poorly water-soluble drugs in humans based on rat intestinal permeability assessed by an in vitro chamber method. Eur J Pharm Biopharm. 2004;58(3):659–65. doi: 10.1016/j.ejpb.2004.03.029.PubMedCrossRefGoogle Scholar
  41. 41.
    Grant GT, Morris ER, Rees DA, Smith PJC, Thom D. Biological interactions between polysaccharides and divalent cations: the egg-box model. FEBS Lett. 1973;32(1):195–8. doi: 10.1016/0014-5793(73)80770-7.CrossRefGoogle Scholar
  42. 42.
    European Directorate for the Quality of Medicines & Healthcare. European Pharmacopoeia and Supplements 7.8 ed. Strassbourg.Google Scholar
  43. 43.
    Guilherme MR, Silva R, Girotto EM, Rubira AF, Muniz EC. Hydrogels based on PAAm network with PNIPAAm included: hydrophilic–hydrophobic transition measured by the partition of Orange II and Methylene Blue in water. Polymer. 2003;44(15):4213–9. doi: 10.1016/S0032-3861(03)00370-7.CrossRefGoogle Scholar
  44. 44.
    Muhr AH, Blanshard JMV. Diffusion in gels. Polymer. 1982;23(7):1012–26. doi: 10.1016/0032-3861(82)90402-5.CrossRefGoogle Scholar
  45. 45.
    Levin AD, Vukmirovic N, Hwang C-W, Edelman ER. Specific binding to intracellular proteins determines arterial transport properties for rapamycin and paclitaxel. Proc Natl Acad Sci U S A. 2004;101(25):9463–7. doi: 10.1073/pnas.0400918101.PubMedCrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2013

Authors and Affiliations

  • Beatrice Semmling
    • 1
  • Stefan Nagel
    • 1
  • Katrin Sternberg
    • 2
  • Werner Weitschies
    • 1
  • Anne Seidlitz
    • 1
  1. 1.Institute of Pharmacy, Center of Drug Absorption and TransportUniversity of GreifswaldGreifswaldGermany
  2. 2.Institute for Biomedical EngineeringUniversity of RostockRostockGermany

Personalised recommendations