Advertisement

AAPS PharmSciTech

, Volume 13, Issue 2, pp 707–712 | Cite as

Structure and Dissolution of l-Leucine-Coated Salbutamol Sulphate Aerosol Particles

  • Janne Raula
  • Jukka Seppälä
  • Jari Malm
  • Maarit Karppinen
  • Esko I. Kauppinen
Research Article

Abstract

l-Leucine formed different crystalline coatings on salbutamol sulphate aerosol particles depending on the saturation conditions of l-leucine. The work emphasizes a careful characterization of powders where structural compartments such as crystal size and particle coating may affect the performance of drug when administered. The sublimation of l-leucine from the aerosol particles took place 90°C lower temperature than the bulk l-leucine which was attributed to result from the sublimation of l-leucine from nano-sized crystalline domains. The dissolution slowed down and initial dissolution rate decreased with increasing l-leucine content. Decreasing crystalline domains to nano-scale improve heat and mass transfer which was observed as the lowered decomposition temperature of the drug salbutamol sulphate and the sublimation temperature of surface material l-leucine as well as the altered dissolution characteristics of the drug. The structure of the coated drug particles was studied by means of thermal analysis techniques (DSC and TG), and the dissolution of salbutamol sulphate was studied as an on-line measurement in a diffusion cell.

KEY WORDS

aerosol dissolution l-leucine coating nanocrystals sublimation 

Notes

ACKNOWLEDGMENTS

We thank Academy of Finland (project nos. 133407 and 140362) for financial support.

Supplementary material

12249_2012_9789_MOESM1_ESM.docx (45 kb)
ESM 1 (DOCX 42 kb)

REFERENCES

  1. 1.
    Hancock BC, Zografi G. Characteristics and significance of the amorphous state in pharmaceutical systems. J Pharm Sci. 1997;86:1–12. and references therein.PubMedCrossRefGoogle Scholar
  2. 2.
    Hancock B, Zografi G. The relationship between the glass transition temperature and the water content of amorphous pharmaceutical solids. Pharm Res. 2008;11:471–7.CrossRefGoogle Scholar
  3. 3.
    Dick K, Dhanasekaran T, Zhang Z, Meisel D. Size-dependent melting of silica-encapsulated gold nanoparticles. J Am Chem Soc. 2002;124:2312–7.PubMedCrossRefGoogle Scholar
  4. 4.
    Lai SL, Guo JY, Petrova V, Ramanath G, Allen LH. Size-dependent melting properties of small tin particles: nanocalorimetric measurements. Phys Rev Lett. 1996;77:99–102.PubMedCrossRefGoogle Scholar
  5. 5.
    Jiang Q, Shi HX, Zhao M. Melting thermodynamics of organic nanocrystals. J Chem Phys. 1999;111:2176–80.CrossRefGoogle Scholar
  6. 6.
    Jiang Q, Zhang Z, Li JC. Melting thermodynamics of nanocrystals embedded in a matrix. Acta mater. 2000;48:4791–5.CrossRefGoogle Scholar
  7. 7.
    Chingunpituk J. Nanosuspension technology for drug delivery. Walailak J Sci Technol. 2007;4:139–53.Google Scholar
  8. 8.
    Liu P, Rong X, Laruc J, van Veen B, Kiesvaara J, Hirvonen J, Laaksonen T, Peltonen L. Nanosuspensions of poorly soluble drugs: preparation and development by wet milling. Int J Pharm. 2011;411:215–22.PubMedCrossRefGoogle Scholar
  9. 9.
    Laaksonen T, Liu P, Rahikkala A, Peltonen L, Kauppinen EI, Hirvonen J, Järvinen K, Raula J. Intact nanoparticulate indomethacin in fast dissolving carrier particles by combined wet milling and aerosol flow reactor methods. Pharm Res. 2011;28:2403–11.PubMedCrossRefGoogle Scholar
  10. 10.
    Ward GH, Schultz RK. Process-induced crystallinity changes in albuterol sulfate and its effect on powder physical stability. Pharm Res. 1995;12:773–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Chew NYK, Chan H-K. Use of solid corrugated particles to enhance powder aerosol performance. Pharm Res. 2001;18:1570–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Raula J, Kuivanen A, Lähde A, Kauppinen EI. Gas-phase synthesis of l-leucine-coated micrometer-sized salbutamol sulphate and sodium chloride particles. Powder Technol. 2008;187:289–97.CrossRefGoogle Scholar
  13. 13.
    Lähde A, Raula J, Kauppinen EI. Simultaneous synthesis and coating of salbutamol sulphate nanoparticles with l-leucine in the gas phase. Int J Pharm. 2008;358:256–62.PubMedCrossRefGoogle Scholar
  14. 14.
    Lähde A, Raula J, Kauppinen EI. Combined synthesis and in-situ coating of nanoparticles in the gas phase. J Nanoparticle Res. 2008;10:121–30.CrossRefGoogle Scholar
  15. 15.
    Raula J, Lähde A, Kauppinen EI. A novel gas phase method for the combined synthesis and coating of pharmaceutical particles. Pharm Res. 2008;25:242–5.PubMedCrossRefGoogle Scholar
  16. 16.
    Raula J, Kuivanen A, Lähde A, Jiang H, Antopolsky M, Kansikas J, Kauppinen EI. Synthesis of l-leucine nanoparticles via physical vapor deposition under various saturation conditions. J Aerosol Sci. 2007;38:1172–84.CrossRefGoogle Scholar
  17. 17.
    Raula J, Lähde A, Kauppinen EI. Aerosolization behavior of carrier-free l-leucine coated salbutamol sulphate powders. Int J Pharm. 2009;365:18–25.PubMedCrossRefGoogle Scholar
  18. 18.
    Raula J, Thielmann F, Kansikas J, Hietala S, Annala M, Seppälä J, Lähde A, Kauppinen EI. Investigations on the humidity-induced transformations of salbutamol sulphate particles coated with l-leucine. Pharm Res. 2008;25:2250–61.PubMedCrossRefGoogle Scholar
  19. 19.
    Zhu Y, Lee KW. Experimental study on small cyclones operating at high flow rates. J Aerosol Sci. 1999;30:1303–15.CrossRefGoogle Scholar
  20. 20.
    Li J, Wang Z, Yanga X, Hua L, Liu Y, Wang C. Decomposing or subliming? An investigation of thermal behavior of l-leucine. Thermochim Acta. 2006;447:147–53.CrossRefGoogle Scholar
  21. 21.
    Hasegawa K, Miyashita S, Komatsu H, Sano C, Nagashima N. In-situ observation of the concentration gradient layer around a growing crystal of leucine complex. J Crystal Growth. 1996;166:925–9.CrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2012

Authors and Affiliations

  • Janne Raula
    • 1
  • Jukka Seppälä
    • 2
  • Jari Malm
    • 3
  • Maarit Karppinen
    • 3
  • Esko I. Kauppinen
    • 1
  1. 1.Department of Applied PhysicsAalto University School of ScienceEspooFinland
  2. 2.Department of Biotechnology and Chemical TechnologyAalto University School of Chemical TechnologyEspooFinland
  3. 3.Department of ChemistryAalto University School of Chemical TechnologyEspooFinland

Personalised recommendations